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Abstract: The rapid rise in pollution levels and green house gas emissions has accelerated an adoption of Electrical 
Vehicles (EVs), which are expected to play the pivotal role in a future energy landscape. As EVs integrate with electrical 
grids, their impact on voltage profiles and grid load distribution becomes increasingly significant. This study explores an 
integration of renewable energy sources, EVs into the microgrid and with the emphasis on energy production and 
consumption optimization. In this analysis, the diesel generator is a microgrid, Photovoltaic (PV) array coupled with the 
wind farm and the Vehicle-to-Grid system near a load. A paper introduces the model for a PV array that employs 
Maximum Power Point Tracking (MPPT) through Particle Swarm Optimization (PSO) to maximize an efficiency of a solar 
energy conversion. Furthermore, it investigates battery control using Adaptive Neuro-Fuzzy Inference System (ANFIS) to 
manage a storage and distribution of energy from both renewable sources and EVs. A microgrid is designed to cater to an 
energy demands of various establishments, including hospitals, universities, and EV charging stations. The 
comprehensive analysis of a micro grid’s performance, with the particular focus on effects of EV integration, is presented 
using MATLAB/Simulink, revealing an influence of EVs on an overall network stability and energy management. 
Keywords: ANFOIS, V2G, EV Vehicles, MATLAB , PSO.  

 
1. Introduction   

 

Transport industry contributes approximately 25 percent 
of the energy-related emissions, making up a large share of 
global greenhouse gas emissions. In order to address this 
issue, electrical vehicles (EVs) have emerged as the viable 
solution. They are classified as clean and environmentally 
friendly due to their lack of tailpipe emissions. Several 
nations are actively promoting an adoption of EVs through 
incentives and regulations, aiming to foster their 
widespread integration into a market. However, a growing 
adoption of EVs is expected to have the an electrical grid. If 
EV charging remains unregulated, it could lead to 
increased peak electricity demand, causing grid instability, 
power losses, and equipment overloads. On an other hand, 

controlled charging and an use of EVs as distributed 
energy resources, especially using Vehicle-to-Grid (V2G) 
technology, could have significant benefits. V2G allows 
EVs to not only draw power from a grid (Grid-to-Vehicle, 
G2V) but also discharge energy back into a grid, 
supporting grid stability, frequency regulation and peak 
load shaving. 
 
The introduction of renewable energy sources (solar and 
wind energy) into a microgrid, coupled with an adoption 
of EVs, further enhances a potential benefits. The 
microgrid consisting of the diesel generator, the PV array, 
the wind farm, and V2G technology can provide the 
sustainable and reliable power supply to various 
establishments, such as hospitals, universities, and EV 
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charging stations. an application of Maximum Power Point 
Tracking through Particle Swarm  
Optimization for a PV array and an use of Adaptive 
Neuro-Fuzzy Inference System for battery control are 
critical for optimizing energy efficiency and ensuring 
effective energy storage and distribution. 
 
EVs are categorized into three types: Battery electric 
vehicle, Hybrid electric vehicle and fuel cell electric 
vehicles (FCEVs), each contributing to reducing reliance on 
fossil fuels. Despite concerns about battery life, recent 
advancements have addressed many of challenges, making 
EVs the promising alternative to conventional Internal 
Combustion Engine (ICE) vehicles. A primary challenges 
associated with V2G technology include managing erratic 
travel patterns and an optimization of charging schedules 
to minimize battery wear while maximizing an efficiency 
of an eV fleet. Additionally, V2G provides an opportunity 
to enhance a resilience and stability of an electrical grid by 
balancing loads and integrating renewable energy sources, 
ultimately helping to flatten an overall load profile and 
reduce environmental pollution. 
 
This paper uses Matlab/Simulink to model and analyze 
microgrids, including the integration of renewable energy 
sources and electric vehicles. We concentrate on how grid 

performance and operating costs are affected by EV 
charging patterns, battery efficiency, and V2G technology. 
 

 
 
Figure. 1 Maximization objective functions of electrical 
vehicle integration into a distribution system 

 
Our goal in conducting this analysis is to investigate how 
EVs can function as decentralized power generation 
sources that minimize their environmental impact while 
supporting load balancing and grid stability of both 
transportation and electricity supply systems. 

 
Standard Charging (Model)  
 

 
 

Figure. 2 Microgrid and electrical vehicles 
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Microgrid systems rely on a precise management of 
fundamental quantities like current and voltage and are 
represented by sinusoidal waveforms at 50 Hz frequency. 
 

2. Photovoltaic System with Particle Swarm 
Optimization for Maximum Power Point 
Tracking 

 
Photovoltaic systems are the key component in renewable 
energy generation. They convert sunlight into electrical 
energy through solar cells. However, the power output of  
a PV systems is not constant and varies depending on 
several factors such as sunlight intensity, temperature  and 
an angle of incidence. The efficiency of a PV system can be 
maximized by operating at a maximum power point, 
which is a point at which a system produces a highest 
power output. To track this point dynamically, the 
maximum power point tracking technique is employed. 
Although many MPPT methods exist, one of the successful 
one is an application of particle swarm 
 
optimization, which is the heuristic optimization algorithm 
based on a social behavior of the birds flocking or fish 
schooling. PSO has been proven to be an efficient method 
for MPPT in PV systems due to its simplicity, fast 
convergence, and ability to deal with non-linearities and 
local maxima. 
 
Maximum Power Point Tracking  
 
MPPT denotes a technique employed in the ongoing 
pursuit of a maximum power point on the power and 
voltage graph of the PV module. This method is crucial 
because it ensures the PV system functions at peak 
performance, particularly when environmental conditions 
are variable. The power and voltage characteristics of the 
PV module usually exhibit a single peak referred to as the 
MPP. The voltage at this point is referred to as Maximum 
Power Voltage (Vmp), while the current is termed 
Maximum Power Current (Imp).  
 
The PV output power depends on various factors: 

 
 Solar irradiance: More sunlight results in higher 

power output. 
 Temperature: Higher temperatures decrease an 

efficiency of a PV cells. 
 Shading and dirt: Partial shading can create 

multiple peaks on a power curve, making MPPT 
challenging. 
 

To efficiently track a MPP, a system must adjust its 
operating voltage to match optimal conditions for power 
generation. 

2. Particle Swarm Optimization  
 
Particle swarm optimization is a computation style that is 
analogous to animal social dynamics of a flock of birds or a 
school of fish. PSO has been employed in MPPT to vary the 
operating point of a PV system to maximize power output. 
 
How PSO Works: 
Initialization: The group of particles symbolizing a 
possible solution is set up with random locations and 
speeds within a search area, like the voltage range for a PV 
system. 
Assessment: for each particle, a fitness function is assessed, 
which, in the context of MPPT, is the power generated by 
the PV module at that specific operating voltage. 
Velocity and Position Adjustment: Each particle adjusts its 
velocity and position based on its past experiences and the 
experiences of its neighbours the best solutions discovered 
until now using an update rule defined by: 

 
Where: 

vi(t+1) is a velocity of particle iii at time t+1. 
w is an inertia weight that controls an exploration and 
exploitation of a search space. 
c1 and c2 are a cognitive and social coefficients, 
respectively, which influence a particle's tendency to 
explore its own experience or that of a swarm. 
r1 and r2 are random numbers between 0 and 1. 
pbest is a personal best position of particle iii. 
gbest is a global best position found by a swarm. 
xi is a current position (voltage) of particle iii. 

 
Convergence: Over time, a swarm converges toward a 
maximum power point by iteratively adjusting a particle 
positions and velocities. 

 
Wind Energy: Harnessing a Power of Wind for 
Renewable Energy Generation 
 
One of the most well-known forms of renewable energy is 
wind. It is an eco-friendly, sustainable, and renewable 
energy source that can significantly reduce carbon 
emissions and dependency on fossil fuels. Wind energy is 
harnessed through wind turbines that transform the 
kinetic energy of the wind into mechanical energy, 
subsequently converting it into electricity.  
 
A rising demand for renewable energy, together with 
increasing worries about climate change, has resulted in a 
growth in the utilization of wind energy as a key 
component of the global energy mix. 
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Wind Energy Conversion Process 
To understand an energy production and efficiency of the 
wind turbine system, several key mathematical formulas 
and calculations are used. These include a calculation of 
power output from wind energy, capacity factor, and 
efficiency of a turbine. Below are a most commonly used 
mathematical models for wind energy. 
 
Wind Power Calculation 
 
The power obtained by wind turbine is determined with 
the help of the formula below: 

 
Where, 

P = output power (W) 
ρ = Air density (kg/m³) ≈ 1.225 kg/m³ at sea level 
A = Area swept by the turbine (m²) A=πr², with r 
representing the radius of the wind turbine blades. 
v = Wind speed (m/s) 
 

This equation is based on the kinetic energy of air through 
turbine blades. A cube of wind speed is linked with a 
power. 

 
Power Coefficient  
 
In the wind, a turbine is not able to harness all the energy. 
The Power Coefficient (Cp) of the wind turbine is used to 
determine its efficiency taking into account the constraints 
of the turbine design and the Betz Limit (that the optimum 
energy that can be harnessed in the wind turbine is 59.3%). 

 
Where, 

Pturbine = Power extracted by the turbine (W) 
Cp = Power coefficient (usually ranges from 0.3 to 0.5 
for conventional wind turbines) 
The value of Cp is typically less than 1, and a Betz Limit 
states that Cp can never exceed 0.593 

Energy Output over Time 

To calculate a total energy produced by the wind turbine 
for the given period, we use a following formula: 

 

Where: 

E = Energy output (Wh or kWh) 

Pturbine = Power extracted by a turbine (W) 

t = Time (hours) 

This gives an energy produced by a turbine in kilowatt-
hours or watt-hours for the specified time period. 

Capacity Factor 

The primary metric that characterizes a wind turbine's 
actual energy production in relation to its theoretical 
maximum output is the capacity factor (CF). It is the 
measure of how effectively the turbine operates over time. 

 

Where: 

 Eactual= Actual energy production during the 
duration (kWh). 

 Emax= Maximum possible energy output if a 
turbine operated at full capacity all a time (kWh). 

Capacity factors change according to the wind conditions, 
however, the standard range of onshore wind turbines is 
between 20 percent and 40 percent, while offshore wind 
turbines may have the higher capacity factor (up to 50%). 

Tip Speed Ratio  

The ratio between the velocity of a blade tip and that of the 
wind is referred to as tip speed ratio. It is a significant 
consider in the design of wind turbines, as this affects 
power efficiency. 

 

Where: 

 r = Radius of a turbine blades (m). 

 ω = Angular speed of a rotor (rad/s). 

 v = Wind velocity (m/s). 

A higher TSR denotes more efficient operation at high 
wind speeds, and a typical TSR for optimal wind turbine 
efficiency is between 6 and 10. 

Wind Turbine Efficiency 

The efficiency of the wind turbine is generally is calculated 
using the ratio of energy extracted from a wind to energy 
available in a wind. 

 

Where: 

η = Efficiency (%) 

Pturbine = Power extracted by a turbine (W) 

Pwind = Power available in a wind (W) 

Most commonly, the maximum efficiency is limited by the 
Betz Limit that no wind turbine is allowed to collect over 
59.3% of the energy in the wind. 
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Sizing Wind Turbines and Energy Generation 

To determine the wind turbine's appropriate size for the 
specific site, it is frequently essential to compute the 
annual energy output based on the turbine's power curve 
and average wind speed. The turbine power curve 
illustrates how much power a turbine produces at various 
wind speeds. An estimate can be made by: 

 

Where: 

P(v) = Power output at wind speed v 

Prated = Rated power of a turbine at vrated 

vrated = Rated wind speed (typically 12–15 m/s) 

k = Empirical coefficient for a turbine (typically 
between 2 and 3) 

The annual energy production (AEP) is then calculated as: 

 
Where: 

vi is a wind speed at time iii, 

Δt is a time interval, 

n is a number of time intervals. 

This calculation bears an overall amount of electricity 
produced by a wind turbine over the year, taking into 
account the varying wind speeds. 

Wind Energy Cost Calculations 

An important economic metric for assessing the cost of 
generating electricity with wind turbines is the levelized 
cost of energy. The price by which energy should be sold 
so that the project can attain a break-even point and to 
cover the initial investment, operation and maintenance 
costs. 

The equation for LCOE is: 

 
Where: 

 Ct = Capital costs in year t. 

 Ot = Operating and maintenance costs in year t. 

 Et = Energy produced in year t. 

 N = Project lifetime (commonly 20–25 years). 

LCOE helps in comparing wind energy with other 
energies. Sources on the basis of cost-efficiency. It is these 

mathematical formulas that give the explanation behind 
Understanding how wind turbine generates energy, their 
efficiency, and the amount of energy they can generate 
over a period of time. These calculations are highly 
significant in knowing and using wind optimization. Wind 
energy technologies, energy systems, determining the 
feasibility of the project, and comparing a performance of 
various turbine designs. 

Diesel Energy 

In a context of the diesel generator or power plant, a 
Following key calculations are used in obtaining an energy 
output, fuel consumption, and efficiency of a system. 
Diesel generators have an extensive usage in backup 
power applications, off-grid power generation, and 
distributed energy systems owing to their reliability. and 
relatively simple operation. Below are major mathematical 
formulas used in calculating diesel energy production and 
efficiency? 

Diesel Generator Output 

The output of the diesel generator depends on on an 
engine's rated power. A power produced given by the 
diesel engine is usually expressed in kilowatts (kW) and it 
can be computed using the formula: 

 

Where: 

P = Power output of a diesel engine (kW). 

T = Torque produced by an engine (Nm). 

N = Rotational speed of an engine (RPM). 

Alternatively, power output is often rated directly by a 
manufacturer and expressed as kW or kVA (kilovolt-
amperes). 

Fuel Consumption Calculation 

The fuel consumption of the diesel generator depends on 
its fuel consumption rate, which is usually provided by a 
manufacturer. It is commonly given in terms of liters per 
kilowatt-hour (L/kWh). A fuel consumption can be 
estimated using the following formula: 

 
Where: 

Fuel Consumption = Fuel consumed (liters per hour, 
L/h) 

Power Output = Power produced by a diesel engine 

(kW) 

Fuel Consumption Rate = a fuel consumption rate in 
liters per kWh (L/kWh) 
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For example, if a fuel consumption rate of a generator is 0.2 
L/kWh, and a generator is producing 10 kW, the fuel 
consumption would be:  

 

Thus, a generator would consume 2 liters of diesel fuel 
every hour of operation. 

Diesel Generator Efficiency 

The efficiency of the diesel generator is a ratio of a 
Mechanical power produced by an engine to an Energy 
content of a fuel consumed. It can be calculated as: 

 

Where: 

η = Efficiency of a diesel generator (%) 

Pout = Power output of a diesel engine (kW) 

Pfuel = Power content of a fuel (kW) 

To calculate Pfuel, you need to know an energy content of 
a diesel fuel (in kWh per liter or kWh per gallon). Diesel 
typically has an energy content of about 35.8 MJ/L 
(megajoules per liter) or approximately 9.94 kWh/L. 

 

For instance, if a diesel consumption is 2 L/h and an energy 
content is 9.94 kWh/L, a power content from a fuel would 
be: 

 

The efficiency can then be calculated by dividing a power 
output by a fuel power: 

 

So a diesel generator's efficiency is approximately 50.37%. 

Diesel Fuel Cost Calculation 

To estimate a cost of a fuel required for the diesel 
generator, we use a following formula: 

 

Where: 

Fuel Cost = Cost of a fuel consumed (in local currency, 
e.g., USD) 

Fuel Consumption = Amount of fuel consumed (liters 
per hour, L/h) 

Fuel Price = Price of a fuel per liter (currency per liter) 

For example, if a generator consumes 2 liters of diesel per 
hour and a price of diesel is $1.2 per liter, a cost of fuel per 
hour would be: 

Total Energy Produced by the Diesel Generator over Time 

To calculate a total energy produced over the given period, 
we multiply a power output by an operating time: 

 

Where: 

E = Total energy generated (kWh) 

P = Output power of a diesel generator (kW) 

t = Duration of the operation (hours) 

For example, when the diesel generator operates at 10 W 
for 5 hours results in a total energy output of : 

 

ANFIS Based Battery Controller  

The Adaptive Nero-Fuzzy Inference System is an 
advanced control method that integrates Neural Networks 
and Fuzzy Logic to provide the powerful solution for 
battery control systems. ANFIS is particularly effective in 
situations in which traditional mathematical models are 
difficult to apply, and it excels in learning from data and 
adapting to various system dynamics. In battery control, 
ANFIS can optimize charging and discharging processes, 
extending battery life. Improvement of performance while 
ensuring efficiency of a system. 

Overview of Battery Management System 

A battery management system is used to guarantee that 
the battery is used in a safe and efficient way. The primary 
roles of the BMS consist of: 

 Observing a battery's charge level, health status, and 
temperature. 

 Control the charge/discharge process in order to 

 prevent overcharge or deep discharge, which could 
worsen the performance of a battery or even damage 
it. 

 Balancing a cells to ensure uniform voltage levels 

 across all cells. 

 Improving the efficiency and lifespan of a battery. 

To achieve this, the BMS requires intelligent algorithms 
that adjust a control parameters based on real-time 
feedback from a system.. 

Battery Control Using ANFIS  

ANFIS is the hybrid model in which a neural network and 
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fuzzy logic systems. It is well-suited for battery 
management systems because it can handle uncertainties, 
nonlinearities, and vagueness in system behaviour. Here's 
how ANFIS can be used for battery control: 

Control Process with ANFIS 

ANFIS Training: 

 Control Process with ANFIS the ANFIS model can 
be trained using either historical data or 
simulation data, where a system learns to associate 
an input with a desired output. A training process 
adjusts a fuzzy membership functions, enhancing 
a system’s accuracy in predicting and controlling a 
charging/discharging actions. 

 The training process involves minimizing the cost 
function, which measures an error between a 
predicted and actual battery conditions. 

Output: an output of an ANFIS system is the control action 
that is sent to a Battery Management System to regulate a 
battery’s charging or discharging. A control action can be: 

o Adjusting a charging current or voltage. 

o Adjusting a load applied to a battery. 

o Deciding when to switch between charging 
and discharging modes. 

The fuzzy system can output values like: 

o Charging Current: "High", "Medium", "Low" 

o Discharge Current: "High", "Moderate", "Low" 

o State of Charge (SOC): Maintaining an optimal 
SOC range. 

ANFIS Structure for Battery Control 

The basic structure of an ANFIS system involves multiple 
layers: 

Layer 1 (Fuzzification Layer): 

o Each node in this layer represents the 
fuzzy membership function for each input 
(SOC, voltage, temperature, and load). 

o The outputs of this layer are membership 
degrees that represent how much an input 
belongs to the particular fuzzy set. 

Layer 2 (Rule Layer): 

o Each node represents the fuzzy rule (e.g., 
"IF SOC is Low AND Load is heavy THEN 
Charging Rate is high"). 

o The output is a firing strength of a rule, 
which is a product of a membership 
values. 

Layer 3 (Normalization Layer): 

o This layer normalizes firing strengths of 
rules to ensure that outputs are within an 
appropriate range. 

Layer 4 (Defuzzification Layer): 

In this layer, the outputs of fuzzy rules are aggregated 
according to their firing strengths. A result is the weighted 
mean that signifies a system’s control operation. 

Layer 5 (Output Layer): 

o This layer produces a final output of a 
system, which is a control action (e.g., 
charging current, discharging rate). 

Application Example: Battery Charging Control Using 
ANFIS 

In the solar PV-based energy storage system, an ANFIS-
based battery control system can be used to regulate a 
charging of batteries from a PV array. an inputs to an 
ANFIS might be: 

 The solar power generation (related to sunlight 
intensity), 

 The battery SOC, 

 The battery voltage, 

 The ambient temperature. 

The output of an ANFIS system could be the control action 
that decides an optimal charging rate for a battery, 
ensuring that a battery charges efficiently without 
overcharging, and maintaining a SOC in a desired range. 

ANFIS is the powerful tool for controlling battery systems, 
especially in cases where battery behaviour is complex and 
nonlinear. By combining fuzzy logic’s ability to handle 
uncertainty with learning capabilities of neural networks, 
ANFIS can optimize a charging and discharging process, 
improve battery life, and enhance an overall performance 
of energy storage systems. 

RESULTS  

Power Generation Profile 

The power output of the generator varies throughout a day 
based on a load demand, environmental conditions, and 
an operating cycle of a generator. To analyze a electricity 
produced by the diesel generator or any generator over the 
course of a day, we typically need to consider several 
factors including operational hours, load profile, fuel 
consumption, efficiency, and environmental factors (i.e. 
temperature, humidity, etc.). 
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Figure. 3 A generators daily output of electricity 

 

 
 
Figure. 4 Solar energy produced over the course of the day 
 

 
Figure. 5  Wind-generated energy throughout the day 

The swift expansion of Electric Vehicles (EVs) has led to 
the significant increase in power demand, adding extra 
strain on a microgrid. This rise in demand also amplifies 
variability within a grid. To balance electricity 
consumption with generation, a diesel generator in a 

microgrid plays the key role. Discrepancies in grid 
frequency can be detected by comparing a rotor speed of a 
synchronous machine. Figure 4 shows a total energy 
output from a diesel generator throughout a day. 
However, diesel generators come with major drawbacks, 

including high costs and harmful 
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environmental effects. Despite these disadvantages, diesel 
generators remain necessary when renewable energy 
sources are unable to meet a required energy demand. A 
microgrid relies on two renewable energy sources: 

Figure 5 illustrates a daily energy production from a 
solar panels, where an use of PSO for MPPT ensures 
that a maximum possible energy is harvested from a 
solar radiation available, even under fluctuating 
environmental conditions. By optimizing a 

performance of a PV system, PSO helps enhance an 
overall efficiency and reliability of a microgrid. 

Wind Farm: a wind farm generates electricity 
proportional to a wind speed. Turbines reach their 
maximum power output once a wind speed exceeds 
the specified threshold. If a wind speed exceeds this 
limit, a wind power generation is deactivated until a 
wind returns to optimal conditions. Figure 6 shows a 
daily energy output of a wind farm within a 
microgrid. 

 
Figure. 6 Charged and regulated into a microgrid throughout a day 

 

 
Figure. 7 Load drawn power from a microgrid during a day 

 
The integration of wind energy facilities in microgrids is 
consistently rising because of their sustainable 
characteristics, straightforward design, and great 
efficiency. Unlike traditional power plants, wind farms 
offer unique characteristics that make them an appealing 
energy source for microgrids. Similarly, Electric Vehicles 
(EVs) provide the significant advantage due to their ability 
to support Vehicle-to-Grid (V2G) applications, the feature 
unique to electric cars. V2G enables EVs to directly supply 

electricity back to a distribution microgrid, contributing to 
grid stability. Figure 7 illustrates a power transmitted and 
regulated by an eV to a microgrid throughout a day. 

V2G refers to a process by which EVs transfer stored 
electrical energy from their batteries back into a microgrid. 
A battery in these vehicles act as  energy storage systems, 
and Car-to-Grid (C2G) technology enables a controlled 
charging and discharging of an eV battery based on 
various factors, such as energy demand or supply signals. 
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However, as a number of EVs being charged increases, an 
electrical demand per transformer also rises, particularly 
during peak consumption periods in a microgrid. This can 
pose challenges in maintaining an energy balance within a 
system. 

When multiple EVs are charged simultaneously within a 
same phase, phase imbalances can occur in a microgrid. 
Spontaneous and uncoordinated charging of numerous 
EVs introduces several issues, including voltage drops at 
chargers' connectors. Additionally, a high active power 
draw during simultaneous EV charging can result in 
power losses, further destabilizing a microgrid. 

To address these challenges, an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) controller can be implemented. 
an ANFIS controller optimizes a charging and discharging 
cycles of EV batteries based on real-time grid conditions 
and energy demands.  

By dynamically adjusting a charging rates and 
coordinating a load distribution, an ANFIS controller 
ensures that a microgrid remains balanced, preventing 
phase imbalances, voltage drops, and power losses. This 
intelligent control mechanism helps to maintain an overall 
stability and efficiency of a microgrid, even during periods 
of high EV charging. 

 

 
 
Figure. 8 Total power generation from micro grid during a day 

 
V2G technology, in conjunction with an Adaptive Neuro-
Fuzzy Inference System (ANFIS), serves two main 
purposes: managing battery charge and utilizing an 
available power to stabilize a grid during transient events. 
ANFIS enhances an efficiency of V2G systems by 
providing an adaptive and intelligent control mechanism, 
allowing for dynamic optimization of energy storage and 
distribution. This ensures that current decentralized 
energy storage systems are readily available and efficiently 
managed. Various battery types are available in a market, 
and ANFIS can be used to optimize their performance 
based on real-time grid conditions. 
 
The residential load is represented by an active power 
drawn at the specified power factor, as shown in Figure 8. 
With ANFIS, a charging and discharging cycles of EV 
batteries are precisely controlled to align with a grid's 
demand. A total power generated by a microgrid is 
represented by an active power produced, and this power 
must be equal to or exceed a load. an ANFIS controller 
ensures that a balance between energy demand and 
generation is maintained by optimizing battery operations 
in real-time, as illustrated in Figure 9. 
 

Conclusion 
 

This study demonstrates a significant role of Electrical 
Vehicles (EVs) in shaping a future energy landscape, 
especially when integrated into the microgrid 
environment. By combining renewable energy sources 
such as Photovoltaic (PV) arrays and wind farms with the 
Vehicle-to-Grid (V2G) system, alongside efficient energy 
storage managed by Adaptive Neuro-Fuzzy Inference 
System (ANFIS), a proposed microgrid can enhance energy 
production, consumption, and overall network stability. an 
use of Particle Swarm Optimization (PSO) for Maximum 
Power Point Tracking (MPPT) optimizes solar energy 
conversion, ensuring higher efficiency. an integration of 
EVs into a microgrid was shown to have the profound 
impact on voltage profiles and load distribution, 
underscoring a need for effective management strategies. 
This research provides valuable insights into how 
microgrid systems, particularly in establishments like 
hospitals, universities, and EV charging stations, can better 
adapt to an increasing demand for clean and reliable 
energy. Simulation results from Matlab/Simulink further 
validate a feasibility and effectiveness of these systems in 
maintaining stability, optimizing performance, and 
supporting the sustainable, low-emission future. 

http://www.ijrdes.com/
https://doi.org/10.63328/IJRDES-V7CIP10
http://www.jacksparrowpublishers.com


International Journal of Research and Development in Engineering Sciences                                                    S Haneesh  et.  al.                                                                         
ISSN: 2582 - 4201(Online) , http://www.ijrdes.com/ , IJRDES, Vol. 7, ICETM 2025 , https://doi.org/10.63328/IJRDES-V7CIP10 

Jack Sparrow Publishers © 2025, IJRDES , All Rights Reserved                                                                                                         
www.jacksparrowpublishers.com                                                                                                                     

 
REFERENCES  

[1]. R. K. Beniwal, M. K. Saini, A. Nayyar, B. Qureshi, and 
A. Aggarwal, ‘‘A critical analysis of methodologies for 
detection and classification of power quality events in 
smart grid,’’ IEEE Access, vol. 9, pp. 83507–83534, 
2021.  

[2]. J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and 
N. Mithulananthan, ‘‘A review on a state-of-the-art 
technologies of electric vehicle, its impacts and 
prospects,’’ Renew. Sustain. Energy Rev., vol. 49, pp. 
365–385, Sep. 2015. 

[3]. Y. Qi, G. Mai, R. Zhu, and M. Zhang, ‘‘EVKG: An 
interlinked and interoperable electric vehicle 
knowledge graph for smart transportation system,’’ 
Trans. GIS, vol. 27, no. 4, pp. 949–974, Jun. 2023.  

[4]. M. H. Nikkhah and M. Samadi, ‘‘Evaluating an effect 
of electric vehicle charging station locations on line 
flows: An analytical approach,’’ in Proc. 30th Int. Conf. 
Electr. Eng. (ICEE), May 2022, pp. 287–291.  

[5]. S. Habib, M. Kamran, and U. Rashid, ‘‘Impact analysis 
of vehicle-togrid technology and charging strategies of 
electric vehicles on distribution networks—A review,’’ 
J. Power Sources, vol. 277, pp. 205–214, Mar. 2015.  

[6]. F. Garcia-Torres, D. G. Vilaplana, C. Bordons, P. 
Roncero-Sánchez, and M. A. Ridao, ‘‘Optimal 
management of microgrids with external agents 
including battery/fuel cell electric vehicles,’’ IEEE 
Trans. Smart Grid, vol. 10, no. 4, pp. 4299–4308, Jul. 
2019.  

[7]. S.-A. Amamra and J. Marco, ‘‘Vehicle-to-grid 
aggregator to support power grid and reduce electric 
vehicle charging cost,’’ IEEE Access, vol. 7, pp. 178528–
178538, 2019.  

[8]. C. Liu, K. T. Chau, D. Wu, and S. Gao, ‘‘Opportunities 
and challenges of vehicle-to-home, vehicle-to-

vehicle,and vehicle-to-grid technologies,’’ Proc. IEEE, 
vol. 101, no. 11, pp. 2409–2427, Nov. 2013.  

[9]. S. Shahriar, A. R. Al-Ali, A. H. Osman, S. Dhou, and 
M. Nijim, ‘‘Machine learning approaches for EV 
charging behavior: the review,’’ IEEE Access, vol. 8, 
pp. 168980–168993, 2020.  

[10]. K. Ginigeme and Z. Wang, ‘‘Distributed optimal 
vehicle-to-grid approaches with consideration of 
battery degradation cost under real-time pricing,’’ 
IEEE Access, vol. 8, pp. 5225–5235, 2020.  

[11]. P. Sinha, K. Paul, S. Deb, and S. Sachan, 
‘‘Comprehensive review based on an impact of 
integrating electric vehicle and renewable energy 
sources to a grid,’’ Energies, vol. 16, no. 6, p. 2924, Mar. 
2023.  

[12]. J. James, J. Lin, A. Y. Lam, and V. O. Li, 
‘‘Maximizing aggregator profit through energy trading 
by coordinated electric vehicle charging,’’ in Proc. 
IEEE Int. Conf. Smart Grid Commun. 
(SmartGridComm), Sydney, NSW, Australia, May 
2016, pp. 497–502. 

[13]. Y. Vardanyan, F. Banis, S. A. Pourmousavi, and H. 
Madsen, ‘‘Optimal coordinated bidding of the profit-
maximizing EV aggregator under uncertainty,’’ in 
Proc. IEEE Int. Energy Conf. (ENERGYCON), 
Limassol, Cyprus, Jun. 2018, pp. 1–6.  

[14]. T. Mao, X. Zhang, and B. Zhou, ‘‘Intelligent energy 
management algorithms for EV-charging scheduling 
with consideration of multiple EV charging modes,’’ 
Energies, vol. 12, no. 2, p. 265, Jan. 2019.  

[15]. Z. Moghaddam, I. Ahmad, D. Habibi, and Q. V. 
Phung, ‘‘Smart charging strategy for electric vehicle 
charging stations,’’ IEEE Trans. Transport. Electrific, 
vol. 4, no. 1, pp. 76–88, Mar. 2018. 

 

http://www.ijrdes.com/
https://doi.org/10.63328/IJRDES-V7CIP10
http://www.jacksparrowpublishers.com

