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Abstract: The rapid rise in pollution levels and green house gas emissions has accelerated an adoption of Electrical
Vehicles (EVs), which are expected to play the pivotal role in a future energy landscape. As EVs integrate with electrical
grids, their impact on voltage profiles and grid load distribution becomes increasingly significant. This study explores an
integration of renewable energy sources, EVs into the microgrid and with the emphasis on energy production and
consumption optimization. In this analysis, the diesel generator is a microgrid, Photovoltaic (PV) array coupled with the
wind farm and the Vehicle-to-Grid system near a load. A paper introduces the model for a PV array that employs
Maximum Power Point Tracking (MPPT) through Particle Swarm Optimization (PSO) to maximize an efficiency of a solar
energy conversion. Furthermore, it investigates battery control using Adaptive Neuro-Fuzzy Inference System (ANFIS) to
manage a storage and distribution of energy from both renewable sources and EVs. A microgrid is designed to cater to an
energy demands of various establishments, including hospitals, universities, and EV charging stations. The
comprehensive analysis of a micro grid’s performance, with the particular focus on effects of EV integration, is presented
using MATLAB/Simulink, revealing an influence of EVs on an overall network stability and energy management.
Keywords: ANFOIS, V2G, EV Vehicles, MATLAB , PSO.

controlled charging and an use of EVs as distributed
1. Introduction energy resources, especially using Vehicle-to-Grid (V2G)

T . ) . technology, could have significant benefits. V2G allows
ransport industry contributes approximately 25 percent EVs to not only draw power from a grid (Grid-to-Vehicle,

of the energy-related emissions, making up a large share of G2V) but also discharge energy back into a grid,
global greenhouse gas emissions. In order to address this
issue, electrical vehicles (EVs) have emerged as the viable
solution. They are classified as clean and environmentally

friendly due to their lack of tailpipe emissions. Several  The introduction of renewable energy sources (solar and
nations are actively promoting an adoption of EVs through  \ying energy) into a microgrid, coupled with an adoption
incentives and  regulations, aiming to foster their ¢ pvs  further enhances a potential benefits. The
widespread integration into a market. However, a growing microgrid consisting of the diesel generator, the PV array,
adoption of EVs is expected to have the an electrical grid. If {0 \vind farm, and V2G technology can provide the
EV charging remains unregulated, it could lead 10 g siainable and reliable power supply to various

increased peak electricity demand, causing grid instability, establishments, such as hospitals, universities, and EV
power losses, and equipment overloads. On an other hand,

supporting grid stability, frequency regulation and peak
load shaving.
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charging stations. an application of Maximum Power Point
Tracking through Particle Swarm

Optimization for a PV array and an use of Adaptive
Neuro-Fuzzy Inference System for battery control are
critical for optimizing energy efficiency and ensuring
effective energy storage and distribution.

EVs are categorized into three types: Battery electric
vehicle, Hybrid electric vehicle and fuel cell electric
vehicles (FCEVSs), each contributing to reducing reliance on
fossil fuels. Despite concerns about battery life, recent
advancements have addressed many of challenges, making
EVs the promising alternative to conventional Internal
Combustion Engine (ICE) vehicles. A primary challenges
associated with V2G technology include managing erratic
travel patterns and an optimization of charging schedules
to minimize battery wear while maximizing an efficiency
of an eV fleet. Additionally, V2G provides an opportunity
to enhance a resilience and stability of an electrical grid by
balancing loads and integrating renewable energy sources,
ultimately helping to flatten an overall load profile and
reduce environmental pollution.

This paper uses Matlab/Simulink to model and analyze

microgrids, including the integration of renewable energy
sources and electric vehicles. We concentrate on how grid

Standard Charging (Model)

performance and operating costs are affected by EV
charging patterns, battery efficiency, and V2G technology.

Power Quality

Maximization

Reliabilty

Figure. 1 Maximization objective functions of electrical
vehicle integration into a distribution system

Our goal in conducting this analysis is to investigate how
EVs can function as decentralized power generation
sources that minimize their environmental impact while
supporting load balancing and grid stability of both
transportation and electricity supply systems.
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Figure. 2 Microgrid and electrical vehicles
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24-hour Simulation of a Vehicle-to-Grid (V2G) System | * |
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Microgrid systems rely on a precise management of
fundamental quantities like current and voltage and are
represented by sinusoidal waveforms at 50 Hz frequency.

2. Photovoltaic System with Particle Swarm
Optimization for Maximum Power Point
Tracking

Photovoltaic systems are the key component in renewable
energy generation. They convert sunlight into electrical
energy through solar cells. However, the power output of
a PV systems is not constant and varies depending on
several factors such as sunlight intensity, temperature and
an angle of incidence. The efficiency of a PV system can be
maximized by operating at a maximum power point,
which is a point at which a system produces a highest
power output. To track this point dynamically, the
maximum power point tracking technique is employed.
Although many MPPT methods exist, one of the successful
one is an application of particle swarm

optimization, which is the heuristic optimization algorithm
based on a social behavior of the birds flocking or fish
schooling. PSO has been proven to be an efficient method
for MPPT in PV systems due to its simplicity, fast
convergence, and ability to deal with non-linearities and
local maxima.

Maximum Power Point Tracking

MPPT denotes a technique employed in the ongoing
pursuit of a maximum power point on the power and
voltage graph of the PV module. This method is crucial
because it ensures the PV system functions at peak
performance, particularly when environmental conditions
are variable. The power and voltage characteristics of the
PV module usually exhibit a single peak referred to as the
MPP. The voltage at this point is referred to as Maximum
Power Voltage (Vmp), while the current is termed
Maximum Power Current (Imp).

The PV output power depends on various factors:

e Solar irradiance: More sunlight results in higher
power output.

e Temperature: Higher temperatures decrease an
efficiency of a PV cells.

e Shading and dirt: Partial shading can create
multiple peaks on a power curve, making MPPT
challenging.

To efficiently track a MPP, a system must adjust its
operating voltage to match optimal conditions for power
generation.
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2. Particle Swarm Optimization

Particle swarm optimization is a computation style that is
analogous to animal social dynamics of a flock of birds or a
school of fish. PSO has been employed in MPPT to vary the
operating point of a PV system to maximize power output.

How PSO Works:
Initialization: The group of particles symbolizing a
possible solution is set up with random locations and
speeds within a search area, like the voltage range for a PV
system.
Assessment: for each particle, a fitness function is assessed,
which, in the context of MPPT, is the power generated by
the PV module at that specific operating voltage.
Velocity and Position Adjustment: Each particle adjusts its
velocity and position based on its past experiences and the
experiences of its neighbours the best solutions discovered
until now using an update rule defined by:
vi(t + 1) = wu;(t) + e171(Prest — i) + cora(Grest — ;)

Where:

vi(t+l) is a velocity of particle iii at time t+1.

w is an inertia weight that controls an exploration and

exploitation of a search space.

c1 and c2 are a cognitive and social coefficients,

respectively, which influence a particle's tendency to

explore its own experience or that of a swarm.

r1and r2 are random numbers between 0 and 1.

pbest is a personal best position of particle iii.

gbest is a global best position found by a swarm.

Xi i$ @ current position (voltage) of particle iii.

Convergence: Over time, a swarm converges toward a
maximum power point by iteratively adjusting a particle
positions and velocities.

Wind Energy: Harnessing a Power of Wind for
Renewable Energy Generation

One of the most well-known forms of renewable energy is
wind. It is an eco-friendly, sustainable, and renewable
energy source that can significantly reduce carbon
emissions and dependency on fossil fuels. Wind energy is
harnessed through wind turbines that transform the
kinetic energy of the wind into mechanical energy,
subsequently converting it into electricity.

A rising demand for renewable energy, together with
increasing worries about climate change, has resulted in a
growth in the utilization of wind energy as a key
component of the global energy mix.
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Wind Energy Conversion Process

To understand an energy production and efficiency of the
wind turbine system, several key mathematical formulas
and calculations are used. These include a calculation of
power output from wind energy, capacity factor, and
efficiency of a turbine. Below are a most commonly used
mathematical models for wind energy.

Wind Power Calculation

The power obtained by wind turbine is determined with
the help of the formula below:

1 .
P = Ep_’-i‘f,"i

Where,
P = output power (W)
0 = Air density (kg/m?®) = 1.225 kg/m?3 at sea level
A = Area swept by the turbine (m?) A=mr?, with r
representing the radius of the wind turbine blades.
Vv = Wind speed (m/s)

This equation is based on the kinetic energy of air through
turbine blades. A cube of wind speed is linked with a
power.

Power Coefficient

In the wind, a turbine is not able to harness all the energy.
The Power Coefficient (Cp) of the wind turbine is used to
determine its efficiency taking into account the constraints
of the turbine design and the Betz Limit (that the optimum
energy that can be harnessed in the wind turbine is 59.3%).

1 ;
Pryrbine = E.UA-UJ . (;p
Where,
Pwrbine = Power extracted by the turbine (W)
Cp = Power coefficient (usually ranges from 0.3 to 0.5
for conventional wind turbines)

The value of Cp is typically less than 1, and a Betz Limit
states that Cp can never exceed 0.593

Energy Output over Time
To calculate a total energy produced by the wind turbine
for the given period, we use a following formula:

E = P)‘urbine‘ =1

Where:

E = Energy output (Wh or kWh)
Pwrbine = POwer extracted by a turbine (W)
t = Time (hours)

This gives an energy produced by a turbine in kilowatt-
hours or watt-hours for the specified time period.
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Capacity Factor

The primary metric that characterizes a wind turbine's
actual energy production in relation to its theoretical
maximum output is the capacity factor (CF). It is the
measure of how effectively the turbine operates over time.

Eoctual
CF = —— x 100

nar

Where:

e Eacua= Actual energy production during the
duration (kWh).

e Emax= Maximum possible energy output if a
turbine operated at full capacity all a time (kWh).

Capacity factors change according to the wind conditions,
however, the standard range of onshore wind turbines is
between 20 percent and 40 percent, while offshore wind
turbines may have the higher capacity factor (up to 50%).

Tip Speed Ratio

The ratio between the velocity of a blade tip and that of the
wind is referred to as tip speed ratio. It is a significant
consider in the design of wind turbines, as this affects
power efficiency.

TeWw

TSR =

Where:

e r =Radius of a turbine blades (m).
e = Angular speed of a rotor (rad/s).
¢ v =Wind velocity (m/s).

A higher TSR denotes more efficient operation at high
wind speeds, and a typical TSR for optimal wind turbine
efficiency is between 6 and 10.

Wind Turbine Efficiency

The efficiency of the wind turbine is generally is calculated
using the ratio of energy extracted from a wind to energy
available in a wind.

P .
_ Lturbine % 100

n
wind

Where:

n = Efficiency (%)
Pwrbine = POwer extracted by a turbine (W)
Pwina = Power available in a wind (W)

Most commonly, the maximum efficiency is limited by the
Betz Limit that no wind turbine is allowed to collect over
59.3% of the energy in the wind.
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Sizing Wind Turbines and Energy Generation

To determine the wind turbine's appropriate size for the
specific site, it is frequently essential to compute the
annual energy output based on the turbine's power curve
and average wind speed. The turbine power curve
illustrates how much power a turbine produces at various
wind speeds. An estimate can be made by:

I
P({’) = Prgted % ( ) for v < veated

Vrated

Where:

P(v) = Power output at wind speed v
Praed = Rated power of a turbine at Vrated
Vrated = Rated wind speed (typically 12-15 m/s)

k = Empirical coefficient for a turbine (typically
between 2 and 3)

The annual energy production (AEP) is then calculated as:
AEP = P(v;) x At
i=1

Where:

vi is a wind speed at time iii,
Atis atime interval,
n is a number of time intervals.

This calculation bears an overall amount of electricity
produced by a wind turbine over the year, taking into
account the varying wind speeds.

Wind Energy Cost Calculations

An important economic metric for assessing the cost of
generating electricity with wind turbines is the levelized
cost of energy. The price by which energy should be sold
so that the project can attain a break-even point and to
cover the initial investment, operation and maintenance
costs.

The equation for LCOE is:

N -
LCOE — M
>t B

Where:
e C:=Capital costs in year t.
e O = Operating and maintenance costs in year t.
e E:=Energy produced in year t.
e N =Project lifetime (commonly 20-25 years).

LCOE helps in comparing wind energy with other
energies. Sources on the basis of cost-efficiency. It is these
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mathematical formulas that give the explanation behind
Understanding how wind turbine generates energy, their
efficiency, and the amount of energy they can generate
over a period of time. These calculations are highly
significant in knowing and using wind optimization. Wind
energy technologies, energy systems, determining the
feasibility of the project, and comparing a performance of
various turbine designs.

Diesel Energy

In a context of the diesel generator or power plant, a
Following key calculations are used in obtaining an energy
output, fuel consumption, and efficiency of a system.
Diesel generators have an extensive usage in backup
power applications, off-grid power generation, and
distributed energy systems owing to their reliability. and
relatively simple operation. Below are major mathematical
formulas used in calculating diesel energy production and
efficiency?

Diesel Generator Output

The output of the diesel generator depends on on an
engine's rated power. A power produced given by the
diesel engine is usually expressed in kilowatts (kW) and it
can be computed using the formula:

p_TxN
9549
Where:

P = Power output of a diesel engine (kW).
T = Torque produced by an engine (Nm).
N = Rotational speed of an engine (RPM).

Alternatively, power output is often rated directly by a
manufacturer and expressed as kW or kVA (kilovolt-
amperes).

Fuel Consumption Calculation

The fuel consumption of the diesel generator depends on
its fuel consumption rate, which is usually provided by a
manufacturer. It is commonly given in terms of liters per
kilowatt-hour (L/kWh). A fuel consumption can be
estimated using the following formula:

Fuel Consumption = Power Output x Fuel Consumption Rate
Where:
Fuel Consumption = Fuel consumed (liters per hour,
L/h)
Power Output = Power produced by a diesel engine
(kw)

Fuel Consumption Rate = a fuel consumption rate in
liters per KWh (L/kWh)
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For example, if a fuel consumption rate of a generator is 0.2
L/kWh, and a generator is producing 10 kW, the fuel
consumption would be:

Fuel Consumption = 10kW x 0.2L/kWh = 2L/h

Thus, a generator would consume 2 liters of diesel fuel
every hour of operation.

Diesel Generator Efficiency

The efficiency of the diesel generator is a ratio of a
Mechanical power produced by an engine to an Energy
content of a fuel consumed. It can be calculated as:

_ P ot
fuel

» 100

Where:

n = Efficiency of a diesel generator (%)
Pout = Power output of a diesel engine (kW)
Prel = Power content of a fuel (kW)

To calculate Pfuel, you need to know an energy content of
a diesel fuel (in kwh per liter or kWh per gallon). Diesel
typically has an energy content of about 35.8 MJ/L
(megajoules per liter) or approximately 9.94 kWh/L.

Pjyer = Fuel Consumption (L/h) x Energy Content (kWh /L)

For instance, if a diesel consumption is 2 L/h and an energy
content is 9.94 kWh/L, a power content from a fuel would
be:

Ppueg = 2L/h x 9.94kWh/L = 19.88 kWh

The efficiency can then be calculated by dividing a power
output by a fuel power:

10 kW

= 70 ee LW — 07
Tossw ¢ 100 =50.37 0%

n

So a diesel generator's efficiency is approximately 50.37%.

Diesel Fuel Cost Calculation
To estimate a cost of a fuel required for the diesel
generator, we use a following formula:

Fuel Cost = Fuel Consumption x Fuel Price

Where:
Fuel Cost = Cost of a fuel consumed (in local currency,
e.g., USD)

Fuel Consumption = Amount of fuel consumed (liters
per hour, L/h)

Fuel Price = Price of a fuel per liter (currency per liter)
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For example, if a generator consumes 2 liters of diesel per

hour and a price of diesel is $1.2 per liter, a cost of fuel per

hour would be:

Total Energy Produced by the Diesel Generator over Time

To calculate a total energy produced over the given period,

we multiply a power output by an operating time:
E=Pxt

Where:

E = Total energy generated (kWh)
P = Output power of a diesel generator (kW)
t = Duration of the operation (hours)
For example, when the diesel generator operates at 10 W

for 5 hours results in a total energy output of :

E = 10kW x 5hours = 50kWh
ANFIS Based Battery Controller

The Adaptive Nero-Fuzzy Inference System is an
advanced control method that integrates Neural Networks
and Fuzzy Logic to provide the powerful solution for
battery control systems. ANFIS is particularly effective in
situations in which traditional mathematical models are
difficult to apply, and it excels in learning from data and
adapting to various system dynamics. In battery control,
ANFIS can optimize charging and discharging processes,
extending battery life. Improvement of performance while
ensuring efficiency of a system.

Overview of Battery Management System

A battery management system is used to guarantee that
the battery is used in a safe and efficient way. The primary
roles of the BMS consist of:

= Observing a battery's charge level, health status, and
temperature.

= Control the charge/discharge process in order to

= prevent overcharge or deep discharge, which could
worsen the performance of a battery or even damage
it.

= Balancing a cells to ensure uniform voltage levels

= across all cells.

» Improving the efficiency and lifespan of a battery.

To achieve this, the BMS requires intelligent algorithms
that adjust a control parameters based on real-time
feedback from a system..

Battery Control Using ANFIS

ANFIS is the hybrid model in which a neural network and
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fuzzy logic systems. It is well-suited for battery
management systems because it can handle uncertainties,
nonlinearities, and vagueness in system behaviour. Here's
how ANFIS can be used for battery control:

Control Process with ANFIS
ANFIS Training:

= Control Process with ANFIS the ANFIS model can
be trained wusing either historical data or
simulation data, where a system learns to associate
an input with a desired output. A training process
adjusts a fuzzy membership functions, enhancing
a system’s accuracy in predicting and controlling a
charging/discharging actions.

»= The training process involves minimizing the cost
function, which measures an error between a
predicted and actual battery conditions.

Output: an output of an ANFIS system is the control action
that is sent to a Battery Management System to regulate a
battery’s charging or discharging. A control action can be:

0 Adjusting a charging current or voltage.
0 Adjusting a load applied to a battery.

o Deciding when to switch between charging
and discharging modes.

The fuzzy system can output values like:

o Charging Current: "High", "Medium", "Low"
o0 Discharge Current: "High", "Moderate", "Low"

0 State of Charge (SOC): Maintaining an optimal
SOC range.

ANFIS Structure for Battery Control

The basic structure of an ANFIS system involves multiple
layers:

Layer 1 (Fuzzification Layer):

o0 Each node in this layer represents the
fuzzy membership function for each input
(SOC, voltage, temperature, and load).

0 The outputs of this layer are membership
degrees that represent how much an input
belongs to the particular fuzzy set.

Layer 2 (Rule Layer):

o Each node represents the fuzzy rule (e.g.,
"IF SOC is Low AND Load is heavy THEN
Charging Rate is high").

0 The output is a firing strength of a rule,
which is a product of a membership
values.
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Layer 3 (Normalization Layer):

0 This layer normalizes firing strengths of
rules to ensure that outputs are within an
appropriate range.

Layer 4 (Defuzzification Layer):

In this layer, the outputs of fuzzy rules are aggregated
according to their firing strengths. A result is the weighted
mean that signifies a system’s control operation.

Layer 5 (Output Layer):

o This layer produces a final output of a
system, which is a control action (e.g.,
charging current, discharging rate).

Application Example: Battery Charging Control Using
ANFIS

In the solar PV-based energy storage system, an ANFIS-
based battery control system can be used to regulate a
charging of batteries from a PV array. an inputs to an
ANFIS might be:

» The solar power generation (related to sunlight
intensity),

» The battery SOC,
= The battery voltage,
= The ambient temperature.

The output of an ANFIS system could be the control action
that decides an optimal charging rate for a battery,
ensuring that a battery charges efficiently without
overcharging, and maintaining a SOC in a desired range.

ANFIS is the powerful tool for controlling battery systems,
especially in cases where battery behaviour is complex and
nonlinear. By combining fuzzy logic’s ability to handle
uncertainty with learning capabilities of neural networks,
ANFIS can optimize a charging and discharging process,
improve battery life, and enhance an overall performance
of energy storage systems.

RESULTS

Power Generation Profile

The power output of the generator varies throughout a day
based on a load demand, environmental conditions, and
an operating cycle of a generator. To analyze a electricity
produced by the diesel generator or any generator over the
course of a day, we typically need to consider several
factors including operational hours, load profile, fuel
consumption, efficiency, and environmental factors (i.e.
temperature, humidity, etc.).

o089


http://www.ijrdes.com/
https://doi.org/10.63328/IJRDES-V7CIP10
http://www.jacksparrowpublishers.com

International Journal of Research and Development in Engineering Sciences

S Haneesh et. al.

ISSN: 2582 - 4201(Online) , http://www.ijrdes.com/ , IJRDES, Vol. 7, ICETM 2025 , https://doi.org/10.63328/IJRDES-V7CIP10

Power Generated by the Generator
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Figure. 3 A generators daily output of electricity
Power Generated by Solar
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Figure. 4 Solar energy produced over the course of the day
Power Generated by Wind
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Figure. 5 Wind-generated energy throughout the day

The swift expansion of Electric Vehicles (EVS) has led to
the significant increase in power demand, adding extra
strain on a microgrid. This rise in demand also amplifies
variability within a grid. To balance electricity
consumption with generation, a diesel generator in a
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microgrid plays the key role. Discrepancies in grid
frequency can be detected by comparing a rotor speed of a
synchronous machine. Figure 4 shows a total energy
output from a diesel generator throughout a day.
However, diesel generators come with major drawbacks,

including high costs and harmful
@100
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environmental effects. Despite these disadvantages, diesel
generators remain necessary when renewable energy
sources are unable to meet a required energy demand. A
microgrid relies on two renewable energy sources:

Figure 5 illustrates a daily energy production from a
solar panels, where an use of PSO for MPPT ensures
that a maximum possible energy is harvested from a
solar radiation available, even under fluctuating
environmental  conditions. By optimizing a

performance of a PV system, PSO helps enhance an
overall efficiency and reliability of a microgrid.

Wind Farm: a wind farm generates electricity
proportional to a wind speed. Turbines reach their
maximum power output once a wind speed exceeds
the specified threshold. If a wind speed exceeds this
limit, a wind power generation is deactivated until a
wind returns to optimal conditions. Figure 6 shows a
daily energy output of a wind farm within a

Power Charged and Regulated into the Microgrid

2 T

Fower (KW)
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Figure. 6 Charged and regulated into a microgrid throughout a day
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Figure. 7 Load drawn power from a microgrid during a day

The integration of wind energy facilities in microgrids is
consistently  rising because of their sustainable
characteristics, straightforward design, and great
efficiency. Unlike traditional power plants, wind farms
offer unique characteristics that make them an appealing
energy source for microgrids. Similarly, Electric Vehicles
(EVs) provide the significant advantage due to their ability
to support Vehicle-to-Grid (V2G) applications, the feature
unique to electric cars. V2G enables EVs to directly supply
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electricity back to a distribution microgrid, contributing to
grid stability. Figure 7 illustrates a power transmitted and
regulated by an eV to a microgrid throughout a day.

V2G refers to a process by which EVs transfer stored
electrical energy from their batteries back into a microgrid.
A battery in these vehicles act as energy storage systems,
and Car-to-Grid (C2G) technology enables a controlled
charging and discharging of an eV battery based on
various factors, such as energy demand or supply signals.
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However, as a number of EVs being charged increases, an
electrical demand per transformer also rises, particularly
during peak consumption periods in a microgrid. This can
pose challenges in maintaining an energy balance within a
system.

When multiple EVs are charged simultaneously within a
same phase, phase imbalances can occur in a microgrid.
Spontaneous and uncoordinated charging of numerous
EVs introduces several issues, including voltage drops at
chargers' connectors. Additionally, a high active power
draw during simultaneous EV charging can result in
power losses, further destabilizing a microgrid.

To address these challenges, an Adaptive Neuro-Fuzzy
Inference System (ANFIS) controller can be implemented.
an ANFIS controller optimizes a charging and discharging
cycles of EV batteries based on real-time grid conditions
and energy demands.

By dynamically adjusting a charging rates and
coordinating a load distribution, an ANFIS controller
ensures that a microgrid remains balanced, preventing
phase imbalances, voltage drops, and power losses. This
intelligent control mechanism helps to maintain an overall
stability and efficiency of a microgrid, even during periods
of high EV charging.

Total Power Generation from Microgrid
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Figure. 8 Total power generation from micro grid during a day

V2G technology, in conjunction with an Adaptive Neuro-
Fuzzy Inference System (ANFIS), serves two main
purposes. managing battery charge and utilizing an
available power to stabilize a grid during transient events.
ANFIS enhances an efficiency of V2G systems by
providing an adaptive and intelligent control mechanism,
allowing for dynamic optimization of energy storage and
distribution. This ensures that current decentralized
energy storage systems are readily available and efficiently
managed. Various battery types are available in a market,
and ANFIS can be used to optimize their performance
based on real-time grid conditions.

The residential load is represented by an active power
drawn at the specified power factor, as shown in Figure 8.
With ANFIS, a charging and discharging cycles of EV
batteries are precisely controlled to align with a grid's
demand. A total power generated by a microgrid is
represented by an active power produced, and this power
must be equal to or exceed a load. an ANFIS controller
ensures that a balance between energy demand and
generation is maintained by optimizing battery operations
in real-time, as illustrated in Figure 9.
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Conclusion

This study demonstrates a significant role of Electrical
Vehicles (EVs) in shaping a future energy landscape,
especially when integrated into the microgrid
environment. By combining renewable energy sources
such as Photovoltaic (PV) arrays and wind farms with the
Vehicle-to-Grid (V2G) system, alongside efficient energy
storage managed by Adaptive Neuro-Fuzzy Inference
System (ANFIS), a proposed microgrid can enhance energy
production, consumption, and overall network stability. an
use of Particle Swarm Optimization (PSO) for Maximum
Power Point Tracking (MPPT) optimizes solar energy
conversion, ensuring higher efficiency. an integration of
EVs into a microgrid was shown to have the profound
impact on voltage profiles and load distribution,
underscoring a need for effective management strategies.
This research provides valuable insights into how
microgrid systems, particularly in establishments like
hospitals, universities, and EV charging stations, can better
adapt to an increasing demand for clean and reliable
energy. Simulation results from Matlab/Simulink further
validate a feasibility and effectiveness of these systems in
maintaining stability, optimizing performance, and
supporting the sustainable, low-emission future.
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