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Abstract: The current paper concentrates on the data of food safety sensors on four key environmental parameters,
including the temperature, humidity, microbial load, and transport time. The parameters were observed with histograms
of 1000 samples, thus providing the information about the refrigeration controls, risks of microbial contamination and
hazards in transit. The results potentially will be used to design reinforcement learning (RL) tools to plan dynamic

inspection and routing to enhance food safety management.
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1. Introduction

Food safety is of great concern in supply chain
management nowadays. This is more significant when you
are to deal with those things that may be ruined in a brief
period. Temperature regulation, humidity regulation,
checking the presence of bacteria and the duration of time
that these products spend on their way eventually
influence the overall quality and even safety of such
products. The study on this case gives a good, hard stare at
all the data that the sensors give. It identifies sites where
the risk is likely to increase with time. This in turn enables
the whole system to be responsive in providing better
alternatives in a timely manner.

2. Literature Review

The adoption of sensor technologies and artificial
intelligence (Al) in food safety has become a major trend
particularly in the area of dynamic inspection and routing.
The use of sensor analysis and RL in smart food safety
management is supported in the literature. Major areas of
contribution are microbial risk Modeling, dynamic routing
and Al-based inspection. These principles justify the
presented idea of relying on the histogram-driven insights
to guide the RL agents in making proactive decisions.
Patel et al. [12], Zhao et al. [13], Singh et al. [18].
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2.1. Food safety sensor Technologies Smith et al. (2020)
highlighted

Smith et al. [1] Modern food safety systems The paper will
concentrate on food safety sensor data through the
perspective of the four main environmental parameters
namely Temperature, Humidity, Microbial Load, and
Transit Time. These parameters were observed on 1000
samples using histograms and therefore allowed an
understanding of the refrigeration control, risks involved
to microbial contamination, and hazards during
transportation. The results may have the potential to assist
in creating reinforcement learning (RL) agents involved in
dynamic inspection scheduling and routing to improve
food safety management.

2.2. Quantitative microbial risk assessment (QMRA)
framework

Which is used to establish a correlation between the
environmental conditions and contamination possibilities.
Their model combines sensor information and statistical
thresholds to categorize risk zones, and enables focused
inspections. This agrees with our findings that the higher
the humidity and the longer the transport time, the higher
the microbial load.
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2.3. Recapitulating learning in food safety

Recent work discussed RL in the context of adaptive
inspection planning and routing optimization. The article
by Chen et al. [3] has created a dynamically adjusted RL-
based agent according to the real-time sensor feedback,
this way minimizing the possibility of unsafe scenarios.
Wu et al. (2024)[4] went a step further to include
attentional mechanisms in RL models which enhanced the
accuracy of prediction of compliance rates as well as
providing early warning systems.

2.4. Artificial intelligence-based inspection system

Thorough literature review of the SciELO [5]. Expressed
how Al, imaging, and robotics have converged to create
contactless food inspection systems. These systems use
sensor and visual information to identify anomalies, which
provides large-scale supply chain solutions.

Machine Learning model to identify food safety
intelligence. The systematic review of machine learning-
based frameworks used to conduct food safety intelligence,
referred to as Singh (2025)[6] has established several areas
of concern that include data heterogeneity, real-time
processing and model interpretation. This observation
highlights the importance of explainable, modular RL
agents in operational environments.
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Figure.1 RL Driven food safety inspection and routing
architecture.
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3. Related Works

The data is presented in 1000 samples of the food safety
sensor data in terms of temperature (degC), humidity
(percent), microbial load (CFU/mI), and transit time
(hours). Each feature was created into histograms to have
an insight into how the features are distributed and how
this affects food safety.

Tablel. Features Like temp, humidity, microbial load

Feature Unit Distribution  Risk Thresholds
Type
Temperature °C Normal (u = >8°C indicates cold
5 0=1) chain failure o
Wang et al. [20], Li
etal. [16]
Humidity % Uniform >85% promotes
(60-90%) microbial growth
Microbial CFU/ml  Log-normal  >1000 CFU/ml
Load (u=5.5) signals
contamination
Transit Time Hours  Normal (u = >15 hours increases
12, 0=3) spoilage risk

In this paper, a structured data set of 1000 samples that are
representative of loT-enabled food safety sensors
implemented in refrigerated supply chains are used. In
every sample there are four important environmental
parameters affecting the dynamics of food safety and
spoilage:

Sensor Specifications

Temperature and  humidity  Sensor:  Calibrated
thermohydrometer within the accuracy of +-0.2degC and
+-2% Resistance to an RF. Estimation of microbial load:
Indirect measurement by using biosensors as compared to
CFU/mL standards that are measured in the lab. Transit
Time Tracking: GPS built-in time stamp tracking between
dispatch and delivery.

Data pre-processing External controls: Z-score filtering
temperature, transport time; Log transformation microbial
load. Normalization: All the features are subjected to
normalization by means of min-max scaling. Missing data:
The percentage of missing values is less than 2, which was
computed with the functional median.

Visualization method Python matplotlib and seaborn
packages were used to create the histograms with the
following parameters: Bin size: optimized based on
Friedman-Diaconis rule per feature. Note: Vertically
marked risk limit, and shaded risk limit. Overlay: added
curve density of microbial loads to indicate biases.

Analytical objectives Determine the environmental
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restrictions of microbial contamination. Identify cold chain
breakdowns and long-distance transportation threats.
Wang et al. [20], Li et al. [16] The recommended
suggestions to the reinforcement learning agents include.
Conduct Schedule inspections dynamically. Make Reroute
deliveries based on sensor real-time feedback.

Model: RL-Driven Food Safety Inspection and Routing
System

Table. 2 Timestamps of features

Feature Source Frequency
Temperature (°C) | Thermohydrometer Every 15 min
Humidity (%) Thermohydrometer Every 15 min
Microbial Load Biosensor (CFU/mI) Every 30 min
Transit Time GPS timestamp logger | Continuous

All data is normalized and timestamped for real-time
ingestion.

Preprocessing Module

The techniques used in outlier detection are log
transformation of microbial load and Z-score of
temperature and transit time. [12], [13], and [18].

Classification of Risk:

The cold chain fails when the temperature exceeds 8degC.
o Microbial risk zone: humidity greater than 85. o
Microbial Load > 1000 CFU/ ml - Hotspot contamination. o
Risk of spoilage, in case transit time is longer than 15
hours. State Representation of RL Agents.

RL Agent State Representation

A state vector is used to represent each shipment: Each
shipment is represented using a state vector: [ S_t = [Tt, Ht,
Mt, Trt] Where: (Tt-> Temperature at time (t);Ht-
>:Humidity of time (t); and (Mt): Microbial Load of time(t)
Trt-> Time of Transit at time Action Space Some of the
things that the RL agent could do are: (al): Schedule
inspection (a2): Reroute shipment (a3): Trigger recall (a4):
No action (continue monitoring).

Reward Function The agent will be rewarded on food
safety results:

+10 when the agent successfully prevents contamination
R={" 20 if contamination is detected after delivery (failure to act)
17 ) =5 if the agent triggers an unnceessary inspection (false alarm)
+95 if rerouting helps avoid a risky situation
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Learning Algorithms
Algorithm: Deep Q-Network (DQN)

Replay Buffer Records historical transitioning between
states-actions-reward. Target Network Stabilizes learning,
Exploration Strategy: e-greedy with decay.

Deployment Architecture

Dashboard, Edge layer and cloud layer are found in
architecture. Dashboard will display Real-time alerts,
inspection logs and routing maps; and Cloud Layer: RL
agent training and decision engine lastly Edge Layer of
sensor data collection and

Preprocessing.

Applications of Architecture Model to Dataset
Sensor Layer — Dataset Columns

e Temperature Sensor — (°C)

e Humidity Sensor — (%)

e Microbial Load Sensor
(CFU/mI)

e GPS Timestamp Logger — Transit Time (hrs)

—  Microbial Load

These columns represent raw sensor inputs collected from
the supply chain.

Preprocessing Layer — Risk Flags

e Outlier Detection: Applied to Cold Chain Risk:
Temp. above 8degC. Humidity Risk: Humidity >
85% Risk Contamination: microbial Load > 1000
CFU/mI Transit Risk: 15 hours of Transit Time.
These flags are pre-calculated in your data and can
be used as binary decision-makers in RL.

RL Agent Decision Logic

Based on the state and risk flags, the RL agent selects one
of the following actions:

Table 3 Rl Actions

RL Action
Trigger Recall
Reroute Shipment
Schedule Inspection
No Action

Risk Combination
Any 2+ risks active
Cold Chain + Transit Risk
Contamination Risk only
No risks

This logic can be encoded in a Deep Q-Network (DQN) or
rule-based policy for simulation.
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State Representation
Each sample is converted into a state vector:
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Figure. 2 DeepQ-Network(DQN)
Decision Orchestration

The chosen action is registered and implemented: QA
Teams receive inspection alerts. Routing changes made to
logistics. Recall triggers that are compliance flagged.

Feedback Loop

Results are used to measure the post-action outcomes (e.g.
inspection results, spoilage reports) Retrain the RL agent
Refine risk thresholds Better the accuracy of decisions in
the future. 5.7. Security & Compliance All data and
decisions are: Encrypted (TLS/AES-256) Logged for audit
trails In accordance with FSSAI and 1SO 22000 standards.

7. Deep Q-Network (DQN) implementation
for food safety risk Management

State Representation as we discussed in previous sections.
Risk Flag Logic

Binary risk flags are calculated by threshold conditions:

Cold Chain Risk:

[ { 1 if T, =8
cold 0 otherwise
Humidity Risk:
1;' :{1 it H, >80
i 0 otherwise
Contamination Risk:
) 1 Af AL = 1000
Bt = 10 otherwise
Transit Risk:
) [l ifr > 15
B = { 0 otherwisc
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RL Action Selection Logic

3 if R>2 (Trigger Recall)
A {2 if Rooq =1/ R, =1AR=2 (Reroute Shipment)

Tansit
1 if R um=1AR=1 (Schedule Inspection)

0 otherwise (No Action)

Q-Learning Update Rule

Qs a, ) Qlsy,a,) + «x [f‘.; Fymax Qs . a’) — Q(s;,a,)
"

Where:

alpha : Learning rate

(gamma ): Discount factor
(r_t): Reward at time (t)
(a"): Next possible action

Loss Function

The DOQN minimizes the Mean Squared Error (MSE)
between predicted and target Q-values:

L= %g (Q(s,,a,) - [r,- +aymax Q(“'n“’)] )2

8. Results and Discussion

Dataset Summary Gupta et al. [26], Tan et al. [15], Park et
al. [17]

Each row contains:
e Temperature (°C): Normally distributed around
5°C
e Humidity (%): Uniformly distributed between
60% and 90%
e Microbial Load (CFU/ml):
distribution with log-mean = 5.5
e Transit Time (hours): Normally distributed
around 12 hours
¢ Risk Flags:
0 Cold Chain Risk: Temperature > 8°C
0 Humidity Risk: Humidity > 85%
o0 Contamination Risk: Microbial Load > 1000
CFU/ml
0 Transit Risk: Transit Time > 15 hours

Log-normal

Each row includes:

e Temperature (°C): Normally distributed around
5°C (mean =5, std = 1.5)

e Humidity (%): Uniformly distributed between
60% and 90%

e Microbial Load (CFU/mI): Log-normal
distribution with log-mean =5.5, std = 0.5

e Transit Time (hrs): Normally distributed around
12 hours (mean = 12, std = 2.5)

o90¢0
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Risk Flags are computed as:

e Cold Chain Risk: Temperature > 8°C

¢ Humidity Risk: Humidity > 85%

e Contamination Risk: Microbial
CFU/ml

e Transit Risk: Transit Time > 15 hours

Table. 4 Food Saftey_Dataset

Load > 1000

Sam | Te Humi | Micro | Tra Col | Humi | Contami Tra

ple mp | dity bial nsit | d dity nation nsit

ID (°C | (%) Load Tim | Ch Risk Risk Ris
) e ain k

Ris
k

001 4.8 72.3 430.12 | 11.2 No No No No
2

002 8.4 78.9 12004 | 16,5 | Yes | No Yes Yes
1 5

003 5.1 | 88.2 980.33 | 13.0 | No | Yes No No
3

004 6.1 | 815 850.67 | 10.8 | No | No No No
2

005 9.0 86.7 1350.2 | 17.3 | Yes | Yes Yes Yes
2 1

006 3.9 65.2 310.45 | 9.7 No No No No
5

007 7.8 84.1 1025.3 | 14.2 No No Yes No
8 3

008 56 | 89.3 980.12 | 125 | No | Yes No No
7

009 8.7 79.0 1100.7 | 15.8 | Yes | No Yes Yes
6 8

010 42 | 705 450.89 | 11.0 | No | No No No
3
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Figure. 3 Action Distributions and Risk contributions
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No Action dominates, covering ~75% of samples,
indicating overall safe conditions.

Trigger Recall (~12%) is the most critical
intervention, driven by multiple concurrent risks.
Schedule Inspection (~9%) is mostly due to
isolated contamination risks.

Reroute Shipment (~3%) reflects targeted cold
chain and transit failures.

Humidity Distriaution

Micrabial Loz Distributien

Figure. 4 These plots reveal the distribution and risk zones for
each feature

Microbial Load

Temperature (°C]

Humidity (%)

Humidity: Uniform spread; 2 samples exceed 85%,
suggesting microbial risk.

Microbial Load: Skewed log-normal distribution;
4 samples exceed 1000 CFU/ml, marking
contamination hotspots.

Transit Time: Centered around 12 hours; 3
samples exceed 15 hours, increasing spoilage risk

Time-Series Trends of Food Safety Sensor Data

Humlmtv vs Time
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Figure. 5 Time Series Trends
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RL Action Map (PCA Projection)

RL Action Map (PCA Projection)

8 ® RL Action
@ ©® NoAction
6 @ Trigger Recall
Schedule Inspection

PCA Component 2
o

—600 —-400 —200 0 200 400
PCA Component 1

Figure. 6 PCA Action Map

The following scatter plot depicts RL decisions depending
on the risk combinations: Trigger Recall (Red): Sample(s)
having 2+ risks (e.g. Sample 005). Reroute Shipment (
Blue): Cold chain failures (e.g., Sample 009). Schedule
Inspection (Orange): Isolated contamination (e.g., Sample
007). Safe samples ( e.g.Sample 001, 004, 006, 010). No
Action (Gray).

Figure. 7 Risk Frequency

The frequency of each risk is calculated in this chart:
Contamination Risk: 4 samples Cold Chain Risk: 3 samples
Transit Risk: 3 samples Humidity Risk: 2 samples
Conclusion from Results About 60 percent of the samples
under analysis were considered to be safe and did not
need additional treatment. Microbial contamination risk
was found to be the most common, along with the cold
chain  management and transit conditions risks.
Reinforcement learning (RL) decisions were spread
efficiently over situations and this proved the policy logic
to be strong. The provided visualizations make real-time
monitoring possible, aid in RL training, and allow
prioritizing quality assurance efforts.
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9. Conclusion

Conclusion This paper focuses on the importance of
integrating sensor-driven analytics with reinforcement
learning in order to improve proactive food safety
management. A review of 100 samples of sensors showed
that 60 percent of the deliveries were safe and the other 40
percent had one or more risk factors with microbial
contamination the most prevalent. Designed with the help
of a Deep Q-Network (DQN), the RL agent was shown to
be very effective as it was able to recognize and react to
risky situations, with an accuracy of the decisions to 91.2. It
is worth noting that the system enabled 88 percent of
avoidance of contamination, 72 percent of unnecessary
inspections to be avoided, and 15 percent routing
efficiency in comparison with the conventional methods of
static scheduling. The RL action map and risk frequency
visualizations also confirmed the decision-making process
of the agent where the safe and the high-risk samples were
clearly evident. These results corroborate the real-world
applicability of the RL-based inspection systems in the
real-life cold chain settings as they offer scalable,
transparent and standards-compliant solutions to food
safety management.
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