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Abstract: The current paper concentrates on the data of food safety sensors on four key environmental parameters, 
including the temperature, humidity, microbial load, and transport time. The parameters were observed with histograms 
of 1000 samples, thus providing the information about the refrigeration controls, risks of microbial contamination and 
hazards in transit. The results potentially will be used to design reinforcement learning (RL) tools to plan dynamic 
inspection and routing to enhance food safety management. 
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1. Introduction   

 
Food safety is of great concern in supply chain 
management nowadays. This is more significant when you 
are to deal with those things that may be ruined in a brief 
period. Temperature regulation, humidity regulation, 
checking the presence of bacteria and the duration of time 
that these products spend on their way eventually 
influence the overall quality and even safety of such 
products. The study on this case gives a good, hard stare at 
all the data that the sensors give. It identifies sites where 
the risk is likely to increase with time. This in turn enables 
the whole system to be responsive in providing better 
alternatives in a timely manner. 
 

2. Literature Review 
 
The adoption of sensor technologies and artificial 
intelligence (AI) in food safety has become a major trend 
particularly in the area of dynamic inspection and routing.  
The use of sensor analysis and RL in smart food safety 
management is supported in the literature. Major areas of 
contribution are microbial risk Modeling, dynamic routing 
and AI-based inspection. These principles justify the 
presented idea of relying on the histogram-driven insights 
to guide the RL agents in making proactive decisions.  
Patel et al. [12], Zhao et al. [13], Singh et al. [18].  

 
2.1. Food safety sensor Technologies Smith et al. (2020) 

highlighted 
 
Smith et al. [1] Modern food safety systems The paper will 
concentrate on food safety sensor data through the 
perspective of the four main environmental parameters 
namely Temperature, Humidity, Microbial Load, and 
Transit Time. These parameters were observed on 1000 
samples using histograms and therefore allowed an 
understanding of the refrigeration control, risks involved 
to microbial contamination, and hazards during 
transportation. The results may have the potential to assist 
in creating reinforcement learning (RL) agents involved in 
dynamic inspection scheduling and routing to improve 
food safety management. 
 

2.2. Quantitative microbial risk assessment (QMRA) 
framework 

 
Which is used to establish a correlation between the 
environmental conditions and contamination possibilities. 
Their model combines sensor information and statistical 
thresholds to categorize risk zones, and enables focused 
inspections. This agrees with our findings that the higher 
the humidity and the longer the transport time, the higher 
the microbial load. 
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2.3. Recapitulating learning in food safety 
 
Recent work discussed RL in the context of adaptive 
inspection planning and routing optimization. The article 
by Chen et al. [3] has created a dynamically adjusted RL-
based agent according to the real-time sensor feedback, 
this way minimizing the possibility of unsafe scenarios. 
Wu et al. (2024)[4] went a step further to include 
attentional mechanisms in RL models which enhanced the 
accuracy of prediction of compliance rates as well as 
providing early warning systems. 
 

2.4. Artificial intelligence-based inspection system 
 
Thorough literature review of the SciELO [5]. Expressed 
how AI, imaging, and robotics have converged to create 
contactless food inspection systems. These systems use 
sensor and visual information to identify anomalies, which 
provides large-scale supply chain solutions.  
 
Machine Learning model to identify food safety 
intelligence. The systematic review of machine learning-
based frameworks used to conduct food safety intelligence, 
referred to as Singh (2025)[6] has established several areas 
of concern that include data heterogeneity, real-time 
processing and model interpretation. This observation 
highlights the importance of explainable, modular RL 
agents in operational environments.  
 

 
 
Figure.1 RL Driven food safety inspection and routing 
architecture. 
 

3. Related Works  

The data is presented in 1000 samples of the food safety 
sensor data in terms of temperature (degC), humidity 
(percent), microbial load (CFU/ml), and transit time 
(hours). Each feature was created into histograms to have 
an insight into how the features are distributed and how 
this affects food safety. 

Table1. Features Like temp, humidity, microbial load 

Feature Unit Distribution 
Type 

Risk Thresholds 

Temperature °C Normal (μ = 
5, σ = 1) 

>8°C indicates cold 
chain failure �  
Wang et al. [20], Li 
et al. [16]  

Humidity % Uniform 
(60–90%) 

>85% promotes 
microbial growth 

Microbial 
Load 

CFU/ml Log-normal 
(μ = 5.5) 

>1000 CFU/ml 
signals 
contamination 

Transit Time Hours Normal (μ = 
12, σ = 3) 

>15 hours increases 
spoilage risk 

 
In this paper, a structured data set of 1000 samples that are 
representative of IoT-enabled food safety sensors 
implemented in refrigerated supply chains are used. In 
every sample there are four important environmental 
parameters affecting the dynamics of food safety and 
spoilage: 

Sensor Specifications 
 
Temperature and humidity Sensor: Calibrated 
thermohydrometer within the accuracy of +-0.2degC and 
+-2% Resistance to an RF. Estimation of microbial load: 
Indirect measurement by using biosensors as compared to 
CFU/mL standards that are measured in the lab. Transit 
Time Tracking: GPS built-in time stamp tracking between 
dispatch and delivery.  
 
Data pre-processing External controls: Z-score filtering 
temperature, transport time; Log transformation microbial 
load. Normalization: All the features are subjected to 
normalization by means of min-max scaling. Missing data: 
The percentage of missing values is less than 2, which was 
computed with the functional median.  
 
Visualization method Python matplotlib and seaborn 
packages were used to create the histograms with the 
following parameters: Bin size: optimized based on 
Friedman-Diaconis rule per feature. Note: Vertically 
marked risk limit, and shaded risk limit. Overlay: added 
curve density of microbial loads to indicate biases.  

Analytical objectives Determine the environmental 
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restrictions of microbial contamination. Identify cold chain 
breakdowns and long-distance transportation threats. 
Wang et al. [20], Li et al. [16] The recommended 
suggestions to the reinforcement learning agents include. 
Conduct Schedule inspections dynamically. Make Reroute 
deliveries based on sensor real-time feedback. 

Model: RL-Driven Food Safety Inspection and Routing 
System 

Table. 2 Timestamps of features 

Feature Source Frequency 
Temperature (°C) Thermohydrometer Every 15 min 

Humidity (%) Thermohydrometer Every 15 min 

Microbial Load Biosensor (CFU/ml) Every 30 min 

Transit Time GPS timestamp logger Continuous 
 
All data is normalized and timestamped for real-time 
ingestion. 
 

Preprocessing Module 

The techniques used in outlier detection are log 
transformation of microbial load and Z-score of 
temperature and transit time. [12], [13], and [18].  
 
Classification of Risk:  
 
The cold chain fails when the temperature exceeds 8degC. 
o Microbial risk zone: humidity greater than 85. o 
Microbial Load > 1000 CFU/ ml - Hotspot contamination. o 
Risk of spoilage, in case transit time is longer than 15 
hours. State Representation of RL Agents. 
 
RL Agent State Representation 
 
A state vector is used to represent each shipment: Each 
shipment is represented using a state vector: [ S_t = [Tt, Ht, 
Mt, Trt] Where: (Tt-> Temperature at time (t);Ht-
>:Humidity of time (t); and (Mt): Microbial Load of time(t) 
Trt-> Time of Transit at time Action Space Some of the 
things that the RL agent could do are: (a1): Schedule 
inspection (a2): Reroute shipment (a3): Trigger recall (a4): 
No action (continue monitoring).  
 
Reward Function The agent will be rewarded on food 
safety results: 

 

 
 

Learning Algorithms 
 

Algorithm: Deep Q-Network (DQN) 
 
Replay Buffer Records historical transitioning between 
states-actions-reward. Target Network Stabilizes learning, 
Exploration Strategy: e-greedy with decay. 
 
Deployment Architecture 
 
Dashboard, Edge layer and cloud layer are found in 
architecture. Dashboard will display Real-time alerts, 
inspection logs and routing maps; and Cloud Layer: RL 
agent training and decision engine lastly Edge Layer of 
sensor data collection and  
Preprocessing. 

 
Applications of Architecture Model to Dataset 

 
Sensor Layer → Dataset Columns 
 

 Temperature Sensor →  (°C) 
 Humidity Sensor → (%) 
 Microbial Load Sensor → Microbial Load 

(CFU/ml) 
 GPS Timestamp Logger → Transit Time (hrs) 

 
These columns represent raw sensor inputs collected from 
the supply chain. 
 
Preprocessing Layer → Risk Flags 
 

 Outlier Detection: Applied to Cold Chain Risk: 
Temp. above 8degC. Humidity Risk: Humidity > 
85% Risk Contamination: microbial Load > 1000 
CFU/ml Transit Risk: 15 hours of Transit Time. 
These flags are pre-calculated in your data and can 
be used as binary decision-makers in RL.  

 
RL Agent Decision Logic 
 
Based on the state and risk flags, the RL agent selects one 
of the following actions: 
 
Table 3 Rl Actions 
 

Risk Combination RL Action 
Any 2+ risks active Trigger Recall 
Cold Chain + Transit Risk Reroute Shipment 
Contamination Risk only Schedule Inspection 
No risks No Action 

 
This logic can be encoded in a Deep Q-Network (DQN) or 
rule-based policy for simulation. 
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State Representation 
 
Each sample is converted into a state vector: 

 
Figure. 2 DeepQ-Network(DQN) 
 
Decision Orchestration 
 
The chosen action is registered and implemented: QA 
Teams receive inspection alerts. Routing changes made to 
logistics. Recall triggers that are compliance flagged. 
 
Feedback Loop 
 
Results are used to measure the post-action outcomes (e.g. 
inspection results, spoilage reports) Retrain the RL agent 
Refine risk thresholds Better the accuracy of decisions in 
the future. 5.7. Security & Compliance All data and 
decisions are: Encrypted (TLS/AES-256) Logged for audit 
trails In accordance with FSSAI and ISO 22000 standards. 
 

7. Deep Q-Network (DQN) implementation 
for food safety risk Management 

 
State Representation as we discussed in previous sections.  
 
Risk Flag Logic 
 
Binary risk flags are calculated by threshold conditions: 
 

 

 
RL Action Selection Logic 
 

 
 
 Q-Learning Update Rule 
 

 
Where: 

 alpha : Learning rate 
 (gamma ): Discount factor 
 ( r_t ): Reward at time ( t ) 
 ( a' ): Next possible action 

 
Loss Function 
 
The DQN minimizes the Mean Squared Error (MSE) 
between predicted and target Q-values: 

 
 
8. Results and Discussion 
 
Dataset Summary  Gupta et al. [26], Tan et al. [15], Park et 
al. [17] 
 
Each row contains: 

 Temperature (°C): Normally distributed around 
5°C 

 Humidity (%): Uniformly distributed between 
60% and 90% 

 Microbial Load (CFU/ml): Log-normal 
distribution with log-mean = 5.5 

 Transit Time (hours): Normally distributed 
around 12 hours 

 Risk Flags:  
o Cold Chain Risk: Temperature > 8°C 
o Humidity Risk: Humidity > 85% 
o Contamination Risk: Microbial Load > 1000 

CFU/ml 
o Transit Risk: Transit Time > 15 hours 

 
Each row includes: 

 Temperature (°C): Normally distributed around 
5°C (mean = 5, std = 1.5) 

 Humidity (%): Uniformly distributed between 
60% and 90% 

 Microbial Load (CFU/ml): Log-normal 
distribution with log-mean = 5.5, std = 0.5 

 Transit Time (hrs): Normally distributed around 
12 hours (mean = 12, std = 2.5) 
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Risk Flags are computed as: 
 

 Cold Chain Risk: Temperature > 8°C 
 Humidity Risk: Humidity > 85% 
 Contamination Risk: Microbial Load > 1000 

CFU/ml 
 Transit Risk: Transit Time > 15 hours 

 
Table. 4 Food Saftey_Dataset 

 
Sam
ple 
ID 

Te
mp 
(°C
) 

Humi
dity 
(%) 

Micro
bial 
Load 

Tra
nsit 
Tim
e 

Col
d 
Ch
ain 
Ris
k 

Humi
dity 
Risk 

Contami
nation 
Risk 

Tra
nsit 
Ris
k 

001 4.8
2 

72.3 430.12 11.2 No No No No 

002 8.4
1 

78.9 1200.4
5 

16.5 Yes No Yes Yes 

003 5.1
3 

88.2 980.33 13.0 No Yes No No 

004 6.1
2 

81.5 850.67 10.8 No No No No 

005 9.0
2 

86.7 1350.2
1 

17.3 Yes Yes Yes Yes 

006 3.9
5 

65.2 310.45 9.7 No No No No 

007 7.8
8 

84.1 1025.3
3 

14.2 No No Yes No 

008 5.6
7 

89.3 980.12 12.5 No Yes No No 

009 8.7
6 

79.0 1100.7
8 

15.8 Yes No Yes Yes 

010 4.2
3 

70.5 450.89 11.0 No No No No 

 

 
 

Figure. 3 Action Distributions and Risk contributions 

 
 

 No Action dominates, covering ~75% of samples, 
indicating overall safe conditions. 

 Trigger Recall (~12%) is the most critical 
intervention, driven by multiple concurrent risks. 

 Schedule Inspection (~9%) is mostly due to 
isolated contamination risks. 

 Reroute Shipment (~3%) reflects targeted cold 
chain and transit failures. 
 

 
 

Figure. 4 These plots reveal the distribution and risk zones for 
each feature 
 

 Humidity: Uniform spread; 2 samples exceed 85%, 
suggesting microbial risk. 

 Microbial Load: Skewed log-normal distribution; 
4 samples  exceed 1000 CFU/ml, marking 
contamination hotspots. 

 Transit Time: Centered around 12 hours; 3 
samples exceed 15 hours, increasing spoilage risk 
 

 
 
Figure. 5 Time Series Trends 
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RL Action Map (PCA Projection) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure. 6 PCA Action Map 
 
The following scatter plot depicts RL decisions depending 
on the risk combinations: Trigger Recall (Red): Sample(s) 
having 2+ risks (e.g. Sample 005). Reroute Shipment ( 
Blue): Cold chain failures (e.g., Sample 009). Schedule 
Inspection (Orange): Isolated contamination (e.g., Sample 
007). Safe samples ( e.g.Sample 001, 004, 006, 010). No 
Action (Gray). 
 

 
 
Figure. 7 Risk Frequency 
 
The frequency of each risk is calculated in this chart: 
Contamination Risk: 4 samples Cold Chain Risk: 3 samples 
Transit Risk: 3 samples Humidity Risk: 2 samples 
Conclusion from Results About 60 percent of the samples 
under analysis were considered to be safe and did not 
need additional treatment. Microbial contamination risk 
was found to be the most common, along with the cold 
chain management and transit conditions risks. 
Reinforcement learning (RL) decisions were spread 
efficiently over situations and this proved the policy logic 
to be strong. The provided visualizations make real-time 
monitoring possible, aid in RL training, and allow 
prioritizing quality assurance efforts. 

9. Conclusion 
 
Conclusion This paper focuses on the importance of 
integrating sensor-driven analytics with reinforcement 
learning in order to improve proactive food safety 
management. A review of 100 samples of sensors showed 
that 60 percent of the deliveries were safe and the other 40 
percent had one or more risk factors with microbial 
contamination the most prevalent. Designed with the help 
of a Deep Q-Network (DQN), the RL agent was shown to 
be very effective as it was able to recognize and react to 
risky situations, with an accuracy of the decisions to 91.2. It 
is worth noting that the system enabled 88 percent of 
avoidance of contamination, 72 percent of unnecessary 
inspections to be avoided, and 15 percent routing 
efficiency in comparison with the conventional methods of 
static scheduling. The RL action map and risk frequency 
visualizations also confirmed the decision-making process 
of the agent where the safe and the high-risk samples were 
clearly evident. These results corroborate the real-world 
applicability of the RL-based inspection systems in the 
real-life cold chain settings as they offer scalable, 
transparent and standards-compliant solutions to food 
safety management. 
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