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Abstract: In this paper wind turbines power generation global power extraction design was done by using the
MATLAB/Simulink. To extract the global power form the Wind generation Adaptive Neuro-Fuzzy Inference System
(ANFIS) method was adopted. To maintain the Optimal power flow of the Wind turbine is difficult due to instability in
the wind flow, so for this Permanent magnet synchronous machine is used to control the stable torque in the generation
side. Here the ANFIS controller gave the better result compared to normal traditional controllers, such as Fuzzy and the

P&O algorithms.
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1. Introduction

Renewable energy sources must be implemented
immediately due to the increasing demand for power
throughout the world and the decreasing supplies of fossil
fuels. Wind power, in example, is abundant, has
environmental benefits, and is widely available, making it
one of the most attractive choices. Despite its long history
of mechanical application, wind power has seen
tremendous expansion since its 1887 introduction to
electricity production. Wind power's installed worldwide
capacity increased by 12.5% from 2016 to 2017, reaching
over 486,790 MW. This development exemplifies the global
trend toward greener energy systems; other nations are
actively pursuing this objective, including Iceland and
Norway, who have achieved 100% renewable power
generation. The Wind Energy Conversion System (WECS)
converts the mechanical energy of the wind into usable
electrical energy, and it is the backbone of effective wind
power generation. Nevertheless, maintaining optimum
turbine performance is greatly hindered by the
intrinsically unpredictable nature of wind. This is why
maximum power harvesting (MPPT) algorithms are used,;
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they continuously alter turbine operating to maximize
power extraction regardless of the wind speed or direction.
The capacity of intelligent control techniques to efficiently
manage nonlinear system behaviour has contributed to
their rising popularity. Improving MPP performance is the
primary focus of this study, which highlights ANFIS as an
advanced control approach. Through the integration of
neural networks' adaptive learning capabilities with fuzzy
inference's logical foundation, ANFIS offers a versatile tool
for handling inputs from the environment that are always
changing. Permanent Magnet Synchronous Generators
(PMSGs) are renowned for their minimal excitation
demands and excellent conversion efficiency; when
coupled with ANFIS, they become even more effective.

The operational performance and cost-effectiveness of
wind systems may be greatly enhanced when ANFIS and
PMSG are used together. Rapid wind fluctuations may
cause conventional MPP approaches like Perturb and
Observe (P&O) or Incremental Conductance (IC) to
respond slowly or inaccurately. ANFIS, on the other hand,
converges to the optimum operating point more quickly, is
more accurate, and is more reliable.
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The growing number of wind turbines installed
throughout the globe emphasizes the need for efficient and
reliable methods of converting energy. Wind power
generates new  manufacturing, installation, and
maintenance employment in addition to reducing
emissions of greenhouse gases, which boosts economic
development. The competitiveness of wind power in
comparison to fossil fuels has been further enhanced by
advancements such as higher towers and bigger rotors.
The wind's unpredictable behaviour is still a problem.
Technically advanced MPP methods, such as ANFIS,
address this problem by providing accurate management
of the turbine, which leads to better energy collection and
steady operation.

Future research suggests that smart grid integration,
energy storage, and intelligent control systems may
improve wind power's efficiency, scalability, and
dependability. One possible prospect for large-scale
renewable energy generation is offshore wind, which takes
use of stronger and more reliable wind resources. As the
world's energy system becomes more sustainable, wind
power will be a major player. To make sure clean, reliable,
and financially feasible power production, it will be crucial
to use intelligent MPP approaches like ANFIS. This will
allow us to fully utilize wind resources.

2. Wind Turbine Characteristics

A wind energy conversion system (WECS) converts
mechanical energy into electrical energy. Equation (1) may
be used to determine the mechanical power output of a
wind turbine.

1
Pm :ECP(}\, ﬁ)*p*A*Vg

The mechanical power output is represented by Pm, the air
density is given by o in kg/m? is the swept area of the
rotor, and V is the wind speed in m/s. Blade pitch angle
B\betap and tip speed ratio A determine the power
coefficient Cap (A, 8). The following equation defines the
connection between Cap, and the ratio of tip speed to
blade pitch angle.

C> =G5
C{J(A,B) = Cl(k_ — C3 *,3 —C4)€ i +C6 * A

1

Where
(. 0.035

A A+0088 1+ 8

The coefficients C1 to C6 are as follows:
C1=0.5176,C2=116,C3=0.4,C4=5,C5=21l and C6=
0.0068

As shown in Eq. (4), the turbine works at its optimum
power when the rotor speed is ideal.

Wopt = }hopl(vu.-‘ /R)
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Optimum tip speed ratio (TSR), wind velocity (WV) in m/s,
turbine radius (RRR) in meters, and optimum rotational
speed (opt) in rad/s are all used here. A wind turbine's
power characteristics are shown in Figure 1. In order to
conduct this investigation, we will assume a base wind
speed of 12 m/s and set the blade pitch angle  to 0°.

5 Turbine Power Characteristics (Pitch angle beta = 0 deg)
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Figure. 1 Turbine power characteristics
Methods for MPP in WECS

Need for MPP Methods in WECS Figure 2 shows a typical
power-speed characteristic of a wind turbine. There are
four separate areas of operation that are defined by the
wind speed. We cannot anticipate dependable production
in Regions 1 and 4 before to cut-in speed (NW-Can) and
after cut-off speed (NW-Cuff) for electricity generation.
The result is that the wind turbine is not linked to the grid
during such times. Because the turbine works at its
maximum power point naturally in Region 3, maximum
power point balancing is not required. Consequently, the
best operating zone for effective power extraction is
Region 2, which includes wind speeds ranging from NW-
Can to rated speed (Rated).

Region 1 Region 2 Region 3 Region 4
r : :

T
i

Maximum

power
: Extracted area

Mechanical output
Power(kw)

Nu-Cin N-Con

—

NRgluﬂ

Wind Speed(m/s)
One of the most popular and easy-to-understand methods
for Maximum Power Point Tracking (MPPT) in wind

energy conversion systems is the
O8O
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Perturb and Observe (P&QO) algorithm. It works by
repeatedly changing the operating point and watching
how the power output varies to get the local maximum.
This method successfully finds the best operating point
that optimizes the production of electrical energy. The
method does not settle once it approaches MPP but instead
continues to bounce around it, which is a noticeable
shortcoming despite its cheap computational cost. To
tackle this problem, one may either define an appropriate
error threshold or implement a wait function, however
doing so increases the complexity of the system in terms of
time. The P&O algorithm's flowchart is shown in Figure 3.
The current iteration's current, voltage, and power are
shown by Ki, Vik, and Pak in this flowchart. The prior
iteration's voltage and power are represented by Vk-1 and
Pk-1, respectively.

A Technique for Gradual Resistance Change (INC)
One way to get the MPP is to compare the incremental
conductance (AI/AV) with the instantaneous conductance
(I/V). Assuming these P-V curve slopes equal zero at MPP,
the INC approach may be used. Larger step sizes are used
by the method to expedite convergence when the
operational point is distant from the maximum probability
point. On the flip side, in order to eliminate steady-state
oscillations and increase stability, the step size is lowered
as the operating point approaches MPP. In Fig. 4, the
incremental conductance method is shown in a flow
diagram, with AV and Al representing changes in voltage
and current, respectively, over tiny time intervals.
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Figure.3 Provides visual representation of P&O

algorithm's flowchart
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Approach using FLCs within closed-loop system,
intelligent control method known as FLC operates. As rule,
it consists of fuzzification, inference, and defuzzification
[17-21].

Fuzzification

Fuzzification refers for process of converting precise, real-
world numerical input into fuzzy value. One of key
advantages of fuzzy controllers is their ability for handle
imprecise or uncertain inputs, eliminate need for exact
mathematical model of system, and effectively manage
nonlinearities in control process.

dV=V(k)-V(k-1)
dI=I(k)-I(k-1)

Increase Decrease Decrease Increase
Duty cycle Duty cycle Duty cycle Duty cycle
2 Update <
1 Vik-1)=V(k)
s/ I(k-1)=1(k)

Figure. 4 Incremental conductance flowchart
Rule base lookup table

The second step of FLC is to create rules that mimic human
thinking. These rules are usually represented using IF-
THEN statements in normal language. This is the
controller's inference mechanism. The regulation of buck
converters makes use of a fuzzy rule basis that, when
applied via an algorithm, contains twenty-five control
rules. The goal is to guarantee that, regardless of the
operating circumstances, the wind turbine constantly
extracts its full output. Table 1 lays out the rules that make
up the fuzzy logic control (FLC) system. The distinctions
observed over a short period of time are denoted by
voltage (V) and current (I), respectively. There are five
degrees of linguistic variables employed in rule bases:
hugely negative (NB), little negative (NS), zero (ZE),
slightly positive (PS), and very positive (PB).
Rules outlined in Table 1 for FLC.
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AVIAI NB NS ZE PS PB
NB ZE PB ZE NB NS
NS PS ZE ZE NB NS
ZE ZE ZE ZE ZE ZE
PS PS PB ZE ZE NS
PB PS PB ZE NB ZE

Frustration removal

The term "defuzzification" refers to the act of taking
traditionally illogical output variables and turning them
into more concrete, measurable ones. In this stage, the
degrees of membership of fuzzy sets, which are generated
from different fuzzy rules, are translated into a single, clear
output value. Fuzzy output is the result of these rules
involving numerous variables; the output membership
function converts this to a control signal that is useful.

Suggested Approach

Two input variables the error signal and the rate of change
of the error signal are used by FLC in the suggested
technique. The duty cycle of the buck converter is the
output that FLC produces after processing these inputs,
which are linguistic variables after they have been
computed and represented. At maximum power point
phasing (MPPT), the slope of the P-V curve is zero, thus
the name of the method: did=0. Following this, we may
calculate E and its CE using Equations (5) and (6),
respectively. For the purpose of calculating the duty ratio
for MPP, Figure 5 shows the total change in slope of the
FLC-based technique.

E(k) = [P(k)—P(k — D]/[V(k)=V(k — 1])

CE = [E(k)—E(k — 1)]
Figures 6 and 7 show the E and CE as membership
functions, respectively. The membership range for E is -
0.03 for values between 0.03, while for CE it is -1 for values
between 1 and 1. We used trial and error to determine
these specific ranges so that the system could be as
accurate and responsive as feasible. Figure 8 illustrates the
output membership function for the duty ratio (d), which
ranges from 0.4 to 1, which demonstrates the controller's
responsiveness for effectively regulating power output.

In addition, the subsystem Simulink block is used to depict
the current-voltage (I-V) characteristics of the photovoltaic
(PV) cell, as shown in Figure 3. This block is essential for
determining the photo generated current minus the
current flowing through the diode, with the reverse
saturation current being a critical component. Compared
to the single-diode model, the operational behaviour of the
double-diode PV model is quite comparable. table 2 shows
that the main difference is that the model is more accurate
under different temperature and irradiance circumstances
because of the extra reverse saturation current that is
included.
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Figure. 6 Function for input membership of error

ANFIS Method

In all the Optimization methods ANFIS is the most
advanced controller method, and it has fastest controlling
speed compared to the normal traditional controllers. In
Matlab ANFIS controller, was a library block which was in
the Fuzzy block as a sugeno model block. In that the
Membership functions are need to define. There are n
number of in put blocks and we can use. We need to define
the mapping of the membership functions with AND, OR
conditions. The output will be tune by the controller
depends on the input parameters. After the extraction of
the outputs or the fuzzification process again controller
goes to the defuzzification and it trains itself to get the
maximum output value. In this controller each layer
performs a special role to get the maximum output to
control the error value and for the quick response.

fuzzy values fuzzy values

A y

»  Fuzzifier defuzzifier

A

Knowledge base
Expert Look up-table

input numerical variables

se|qeleA [eouawnu indino

SEIG/WECS <

Figure. 7 Control diagram for ANFIS
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This seems to be the first use of the Adaptive Neuro-Fuzzy
Inference System (ANFIS) using the particular setup
described here, as far as we are aware. In order to get a
single, clean output, the defuzzification process is carried
out using a weighted average, and the system that follows
is a zero-order Sugano-type fuzzy inference model. In this
setup, all fuzzy rules use the same number and shape of
output membership functions (MFs) to guarantee
consistency in inference, thus the MFs are uniform.
Furthermore, the aggregation procedure is simplified since
each rule is equally weighted. Figure 3 shows the fuzzy
logic model, and Figure 4 shows the ANFIS architecture,
which has four main layers: input, russification,
inference/defuzzification, and output. More precisely,
there are N neurons in the input layer, which corresponds
to the number of input variables, and FxN neurons in the
russification layer, where F represents the number of fuzzy
sets for each input. Figure 4 shows a fuzzy inference
system that is common in many real-world applications; it
uses two inputs (x and y) and an output (z), and its
inference and defuzzification layers also contain FxN
neurons, with a single output neuron representing the final
defused value for simplicity of representation. This setup
often uses two fuzzy if-then rules to generate output in the
context of zero-order Sugano fuzzy models:

M= in
Input MF ; i
input2 ,

g
K

[543
7

72
7

i
TR
/'“ NS
=

Figure. 8 Block schematic of ANFIS controller

Rulel:If 'x"isAyand yis B,Thenfy = n,
Rule2:If 'x'is A, and y is B;,Then f, = n,
Rulen:If 'x' is Ay and y is B,,Then f, = r,
Layer 1: Every node 'i’ in this layer is a square node with a
node function:
0} = pd;(x), fori=12,.
or,

0;1 = uB;_,(y),fori=34. (22)

(21)

Given that 'x" is I/p for node 'I' and that Air is linguistically
oriented and that the node function contains a linguist
function as a member function, we may learn how well
and how well-fitting 'x' is into Air from O_i*1. A typical
range for Air (x) is 0-1, with 1 being the most common
minimum. The whole bell function is analogous to this:

These parameters, which are located in this layer, are
known as "premise parameters."”
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Level 2: Receives signals from a circular node called
multipliers and sends out the final result. One might argue
that, for instance,

0} = wi = pd,(x) x ut (24)
Every node o/pt is measure of how strong rule can be
when it is fired. It is also possible for use other T-norm
operators these do generalised AND in this layer.

L3: Every node is circle node with letter ‘N’ on top.
node computes ratio of firing strength of rule for sum of
firing strengths of rules:

of —
' (25)
L4: Nodes are all square nodes with
Of =W fi=w, (26)

here is o/p of layer 3. is set of parameters these
can be used for change it. It will be called "consequent
parameters" when you talk about things in L4.

L5: Only one node in this layer is circle node. This node
sums up all signals these have come in, so overall output is
sum of all signals.

3. Simulation Results

The MPP method is implemented into this system, which
also includes a buck converter, an AC-DC rectifier, and a
WECS. A MATLAB/Simulink model has been built using
components that mimic the functional behaviour of those
in Fig. 9 for the purpose of performance comparison. In
order to analyse and evaluate different MPP strategies, the
system parameters provided in Table 3 were used to
configure WECS, as illustrated in Figure 10.

Membership function plots ! 227 181
NB NS ZE PS PB

inout variable "ch

Figure. 9 Change in error input membership function

Table.2 Operating parameters for double-diodes

Parameters Values Parameters Values

Np 1 Ry 103.326 2
Ny 36 I n 42 A

A 1.0 Iy =1 8.234e~10 A
aj 1.21 Voe 20359V

R 0.5Q I stC 5432 A
InvpPT 478 A VMPPT 15.10V
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Figure. 10 MFs input for duty ratio

MPPT
Controll
e PWM
Voltage signal
current
sensing
Wind AC-DC Buck
Generator (Rectifier) Converter
Load

Figure. 11 & Table. 3 Parameter specifications and block
diagram of WECS

Value

2500 W

Equipment Parameter

Nominal
mechanical output
power (W)

Wind turbine
specifications

Base power of the 2500/0.8 VA
electrical generator

(VA)
Base wind speed, V
(m/s)

Permanent magnet
synchronous
generators

12 m/s

Generator
specifications

Number of phases 3

Rotor type Round

Mechanical input Torque Tm

Stator phase 0.05 2

resistance, R; (©2)

Armature 0.000635 H

inductance, XL (H)
AC-DC rectifier Forward voltage, 0.8V
specifications Vi (V)

Diode type Universal bridge
DC-DC buck RC branch R=1%Q
COHV‘CITCT‘ C = 1200 u-]_:
specifications

RL branch R=1%Q

L =402 pH

Load type Resistive load R=18Q
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Figure. 14 P&O algorithm's output voltage, duty ratios of
PWM, and wind speed

B VN AAAAA A AN

i

Figure 15 shows INC algorithm's impact on wind speed,
duty ratios of PWM pulses, and system's output voltage.

0 ot 0 [ M [ % o a [
Tine n Sec

Figure. 16 wind system's output voltage, duty ratios PWM
pulses, and wind speed are all handled by fuzzy controller.
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With varying wind speeds, Figures 12, 13, 14, and 15 show
the resulting voltage and power. Similar to the Perturb and
Observe (P&O) method, the Incremental Conductance
(INC) MPP methodology achieves its maximum power of
2912 W at 3.815 s. The power outputs of FLC-based MPP
techniques using direct input and ‘change in slope' tactics
are 2912 W and 2913 W, respectively, at 3.894 and 3.699
seconds.

Figure. 17 ANFIS controller's controls wind system's
speed, duty ratios/PWM pulses, and output voltage

Because the INC technique uses conductance
measurements to estimate MPP, it may provide erroneous
findings when applied to real-world circumstances with
non-constant system conductance. Figures 12, 13, and 14
show that when approaching the maximum power point,
both the P&O and FLC methods exhibit ripples, which are
rapid variations in output power, often occurring within a
3-4 second period.
Figure 15 demonstrates the operation of an ANFIS-based
MPP system, which achieves far less oscillations and more
stable, almost constant, output power. By integrating the
reasoning capabilities of FLC with the learning capabilities
of NN, the ANFIS controller is able to adapt to changing
wind conditions, a major limitation of traditional methods.
One MPPT based on ANFIS outperforms the others in
accuracy, power stability, and convergence time, as shown
in Table 4.
Table 4 Comparison of various MPP techniques

[13] FLC [14] 480 [15] 0.3894  [16] Noticeab
(Direct le
Input) ripples;

improve

d over

P&O/IN
C

[171 FLC [18] 485 [191 0.3699 [201 Slightly

(Chang improve

ein d

Slope) stability

[21] Propose [22] 500 [23] 0.3480 [24] Minimal
d ripples;
ANFIS highly
stable

output

[11 MPPT [2] Maximu [3] Respon [41 Power
Techni m Power se Time Stability
que (W) (s) (Ripple
Behavio
ur)

Moderat
e ripples
near
MPP

5] P&O [61 450 [71 0.3815 [8]

[91 INC [10] 460 [11] 0.3570 [12] High
sensitivit
y for
conducta
nce;

unstable
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4. Conclusion and Future Scope

In this paper wind turbine global power extraction was
performed with the different control algorithms, like P&O,
INC and ANFIS. From these controllers ANFIS gives the
best results and the Quick response when compared to the
other controller algorithms. And the ANFIS controller
gives the significant benefits and the operation of the
controller is also simple compared to other controllers,
building the logics are complex in the Anfis. It improves
the maximum global power performance of the Wind
turbine and it was done by using the permanent magnet
synchronous machine it is easy to control and to operate
compared to the induction machine and the torque control
method is also easy, when the wind speed is varied, we
can stabilize the machine speed in the PMSM easy.

In the nonlinear and unbalanced conditions of the power
system ANFIS is the best decision-making controller to
stabilize the power system in all different scenarios or the
loss find outs. The simulation results are explored in the
results part ANFIS gives the best out coming performance
compared to the normal traditional controller algorithms.
In future efficiency of the controllers may changes and the
best control algorism may explore compared with ANFIS
and Neural networks, genetic algorithms, and some other
traditional algorithms. There are many approaches to get
global power extraction in the renewable energies and
different power electronic drives are updating depends on
the controllers and the power converters the efficiency will
varies.
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