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Abstract: — The following paper discusses one of the uses of artificial intelligence for the purpose of optimize the
functioning of storing energy facilities with renewable energy sources, like solar and wind power. It begins by
outlining the theoretical background of the renewable energy production process, technologies of energy storage with
the emphasis on battery-based ones, and Al-based optimization strategies. This is followed by a study of how Al
methods including machine learning and evolutionary algorithms may be applied to increase the competence,
reliability, and economical feasibility of hybrid renewable energy systems. MATLAB is applied to simulate the
practical situations of the solar photovoltaic panels, wind turbines, and battery storage systems. These simulations
apply Al algorithms to optimise the way energy flows, how it is stored, and load balancing in dynamically changing
environmental conditions. Case studies and simulated outcomes are provided that assess an efficacy and issues that
come with the incorporation of Al. These results show that Al-based optimization helps to improve the concert of
renewable Energy storage systems significantly and helps the transition to more ecologically friendly and low-carbon

vitality infrastructure based on TFE.
Keywords: Cyber Threat Intelligence, Deep Neural Network, Real-Time Detection, SIEM, Wazuh , Network Security.

1. Introduction
modern power grids, which have become an inseparable

part of the modern power grid. These systems are meant
to receive excess energy produced during a period when
there is a high output of renewable energy and use it
during a period of low generation or peak demand and

Organizations now face a greater attack surface due to
There has been a significant change in focus toward
sustainable energy sources, especially vitality and wind
power, as a result of the global growing need for clean

and sustainable energy This is because these resources
have also become very important because of the potential
to minimalize the eco-friendly effect attached to the use
of fossil fuel. Nevertheless, intermittency of solar and
wind energy and their variability present significant
challenges in ensuring that the supply of energy is steady
and reliable. The outcome of this fluctuation usually
leads to an inequality among the energy source and
demand and, therefore, the appeal to active mitigation
policy. Systems that store energy using Battery are the
most commonly deployed of storing energy in the
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therefore contribute to grid stability and reliability. This
combination of ESS to sources of renewable energy
provides the chance to stabilize the crucial load leveling,
Support for voltage and rate of recurrence regulation
purposes They make resilience stronger.and flexibility of
operation of the power system. When these pictures are
published, they are distorted even more because of the
use of wide-angle lenses. Although the dominance of ESS
along with renewable sources is advantageous in terms
of its strategy, the functioning processes are complicated.
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The fluctuation in energy production, constantly
changing demand trends, and the necessity to make
rapid and real-time decisions require  the
implementation of sophisticated control methodologies.

Conventional methods of control, in most cases, lack the
necessary flexibility and predictive force to manage the
complexity of systems of hybrid renewable energy. In
this context, Al has become an important facilitator to the
energy sector.

In most cases, Al methodology encompasses a vast array
of methods such as ML and evolutionary algorithms,
which are currently being perceived as advanced to
create smart control strategies, able to adjust in real time,
predict future energy demand, and streamline the
charge-discharge dynamics of storage systems.

The current paper is a detailed analysis of the use of Al
to maximize the energy storage apparatus's performance
in conjunction with the production of power and wind
power. Theoretical discussions of storing energy and
production of renewable energy technologies precede the
consideration of Al-based optimization strategies.

To simulate the operation of Al-based control techniques,
MATLAB models of real-world scenarios, solar
photovoltaic panels, wind turbines, and battery storage
devices, are developed. The outcomes of the simulated
operation have provided a strong indication that artificial
intelligence (Al) may bring about a number of new,
beneficial improvements in the systems for hybrid
renewable energy functionality for a low-carbon and
more renewable energy future.

2. Hybrid Renewable energy

The most popular Energy storage devices, wind turbines,
and solar photovoltaic panels are examples of technology.
Systems of hybrid renewable energy are suggested
solutions meant to address the fundamental shortcomings
of each technology by merging multiple energy sources.

Using the complementary nature of these resources,
HRES can offer more reliable, stable, and efficient supply
of energy to attain TFE. This section outlines a
mathematical modeling scheme of HRES and gives a
comprehensive discussion of energy balance, power flow
dynamics and key performance indicators of the system
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Figure. 1 Hybrid System Block Diagram
Total Generation of Power in the TFE Hybrid System

The total power generated Pgen(t) at any time t from
solar and wind sources was a sum of an individual
outputs:

Pyﬁ'n(t) = Rpi'(t) + Pu.‘l‘(t)

Where:

o  Ppv(t): Power from solar PV system at time t

o  Pwt(t): Power from wind turbine at time t
These values are obtained using a previously discussed
models for PV and wind energy generation.

Power Balance Equation

To ensure reliable operation, TFE hybrid renewable
energy system must maintain the TFE continuous
balance between energy supply, demand, and storage.
This balance was governed by a power balance formula
that guarantees that the total power produced, less the
load demand, was either stored or supplied from storage,
depending on a system's operational state. A general
form of a power balance equation was expressed as:

Pgﬁ'n(t} + P(H,‘i(t) = Roﬂﬂ‘(t) + Pr.'h(t) + Roxs(t)

Where:
o Pdis(t): At time t, the battery's power was
released.

e Pload(t): Load demand at time t

e Pch(t): Power used to charge a battery

e Ploss(t): System losses due to conversion,

transmission, etc.

If Pgen(t)>Pload(t), excess power can charge a battery (if
not full). If Pgen(t)<Pload(t), a battery discharges to meet
a demand.
Battery Energy Dynamics
At time t, the energy contained in a battery Ebatt(t) was
updated by:

E&al‘f(t + At) = Ebutf(t) + Neh - Pf.'h(t) - At — i : Pcﬁs(t) - At
Subject to:

E‘m:m i E&m‘f (t} i Errm.u':
Where:

e nch: Charging compentence
e ndis: Discharging compentence
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e Emin, Emax: Minimum and maximum battery
energy levels

Reliability and Energy Shortage Index

To evaluate reliability, we define a Power Supply Loss
Probability (LPSP),

TFE common metric for hybrid systems:

Et max((], Hm;f(t) - (Pgé:u(t) + Rfi-‘x’(t)))
Et P{(nrf(t)

A lower LPSP indicates higher reliability.

LPSP =

Optimization Objective Function

The hybrid system can be tailored to achieve a variety of
goals, including reducing expenses, increasing
dependability, or reducing battery deterioration.. TFE
general multi-objective optimization problem may be
expressed as:

In}n [Ciotal(z), LPSP(2), Eppss(z)]

Where:
x: Decision variables (e.g., number of PV panels,
wind turbines, battery size)
Ctotal: Total system cost
maintenance)
Eloss: Total energy lost due to curtailment or unmet
demand

Constraints:
Power balance must be maintained
Component capacities must not be exceeded
Battery energy limits must be respected

(capital, operation,

This can be solved using Al techniques such as Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), or
other metaheuristic approaches.

System Performance Metrics

Key metrics used to evaluate hybrid systems include:
Renewable Fraction (RF):
2o4(Ppo(t) + Pug(t))
RF =
Zf PE(Jad(t}
Battery Utilization compentence (BUE):
. Ef Rh'.'r(f}
BUE = =/—
Zf -P('h(t)
Loss of Energy Supply Probability (LESP):
Zf Eun.@upph'erf (f’)
Zf Bnﬂd(t}

These considerations make it possible to estimate the
technical feasibility and the energy competency in a
hybrid system. TFE studies will benefit from more
flexible and adaptable energy services thanks to Systems

LESP =
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for hybrid renewable energy that include solar, wind,
and storage technologies, especially to off-grid or
variable-grid scenario. The interaction between source of
generation and storage dynamics requires an accurate
model of the dynamics to be taken into consideration as
an effective design and operation with mathematical
formulation. Another significant economic and technical
performance could be maximized, which may be
facilitated by Al-based algorithms, and reliably
supported by scalable and sustainable energy systems in
TFE.

3. Solar Energy Generation

Photovoltaic (PV) systems convert solar radiation into
electrical energy wusing a photovoltaic effect. A
performance of these systems was largely controlled by
environmental elements including temperature and
irradiance, as well as by an electrical characteristics of a
PV cells. This section provides TFE mathematical
formulation for modeling solar energy generation and
analyzes key factors affecting PV output.

E—
%
—i—

ry

| PWAL

MPPT technique

Figure. 2 Schematic diagram of PV array with a MPPT
method

Solar Irradiance and Power Output

The power output Ppvof TFE PV panel can be estimated
using a following equation:
Py, =Gi-A-n
Where:
e Ppv: Productivity power of a solar panel (W)
e Gt: Total pv irradiance proceeding a panel
superficial (W/m?)
e A Superficial part of a PV panel (m?2)
e 1: compentence of a Solar module (unitless)
a) Total Irradiance Gt

Total irradiance received by a tilted PV panel was
calculated by:

Gi =G+ Gag+ G,
Where:
e Gb: Beam (direct) irradiance component
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e Gd: Diffuse irradiance component
e Gr: Reflected (albedo) irradiance component

Each of these components depends on a tilt angle,
location, and time of year.

Temperature Effect on Competence

PV module competence decreases as temperature
increases. A corrected compentencenT considering
temperature was given by:

nr = nsrc [1 — B(T. — Tsrc)]

Where:
nSTC: compentence at Standard Test Conditions
(typically 25°C and 1000 W/m?)
[: Temperature coefficient (usually 0.004 to 0.005 per
°C for silicon-based cells)
Tc: Cell temperature (°C)
TSTC: Standard Test Condition heat (25°C)

The cell heatTc can be estimated as:

NOCT — 20
T.=T,+ (T) G

Where:
Ta: Ambient temperature (°C)
NOCT: Nominal Operating Cell Temperature (°C),
typically around 45°C

I-VV and P-V Characteristics of TFE PV Cell
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Figure. 3 Normalized I-V and P-V characteristics of TFE
solar cell

The behavior of TFE PV cell was often modeled using a
single-diode model, which includes TFE current source,
TFE diode, and resistive elements. an current output |
was given by:
V + IR,

R

AV+IR,)
I= Iy — Iy (57 - 1) -

Where:

Iph stands for photogenerated current (A).

=|0: “Saturation current of the diode (A)

= g: Electron charge (1.602x10-191.602 \times 10{-
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19}1.602x10-19” C)

<“V:Voltage output (V)”

® “Rs: resistance in series (Q)”

e “Rsh: Shunt resistance (Q2)”

= n:ldeality factor (usually 1-2)

= “k: Boltzmann's constant (1.381x10-231.381 \times
107{-23}1.381x10-23" J/K)

=T:Temperature absolute (K)

This formula controls the i-V characteristics of a TFE PV
module and aids in figuring out the maximum power
point (MPP),where the voltage and current at the
maximum power point are denoted by Vmp and Imp,
respectively

Maximum Power Point Tracking (MPPT)

To take out a maximum power under varying irradiance
and heat, MPPT algorithms are employed. One generally
used method was Unsettle and Observe (P&O):

P&O Algorithm Logic:
= Perturb voltage and observe power change.
= |f power increase, continue perturbation in a
similar direction.
= |f power decreases,
direction.

reverse a perturbation

This process was mathematically represented by:
AP=P(k)—P(k—1)
AV =V(k)-V(k—1)
Decision rule;

If AP >0 and AV >0, increase voltage
If AP <0and AV > 0, decrease voltage

Analysis then System Sizing

Given TFE location with known solar irradiance data, an
expected daily energy generation Epv over TFE time
period t is:

t
B, = f P, (t) dt
0

This integral can be numerically solved using irradiance
profiles from real-world weather data.

The total energy requirement Eload can then be
compared to Epv, and energy storage capacity Estorage
was sized accordingly:

Estorage = Eload — Epy

This ensures that a battery can compensate during low-
generation periods.

4. Wind Power Production:
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Wind turbines were used to convert the air's kinetic
energy into mechanical energy, which was subsequently
transformed hooked on electrical energy. Wind speed, air
density, rotor swept area, and turbine compentence all
had an impact on the TFE wind turbine's power output.
This section outlines a core mathematical formulations
used in the wind power analysis and explains key
performance factors.

Converter

Wind

Figure. 4 Schematic diagram of Wind energy system.
Power Extracted from Wind

The kinetic power available in a wind flowing through a
rotor swept area of TFE turbine was given by:

1 .
Rr.:mrf - 5»0-{4-'”';

Where:
Pwind: Total power available in a wind (W)
0: Air density (kg/m?), typically 1.225 kg/m? at sea
level
A: Turbine blade swept area (m?), A=rur?
V: Wind speed (m/s)
However, not all of this power can be extracted by a
turbine.

Betz Limit and Power Coefficient

According to Betz's Law, a maximum theoretical
compentence for TFE wind turbine was approximately
59.3%. This means that a power coefficient Cp has an

upper limit of:

16
C, = — =0.593
Privcr 27

The actual power output of TFE wind turbine was then
given by:

1 .
Prurbine = Epﬂ-vlicp

Where:
Cp: Power coefficient (typically ranges from 0.25 to
0.45 for modern turbines)

Wind Speed and Turbine Output Curve
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Wind turbines operate within the TFE defined range of
wind speeds, characterized by key operational thresholds
that determine their energy production capabilities:

Cut-in the speed (vci): This was a minimum wind speed
at which a turbine begins to generate usable electrical
power. For most commercial wind turbines, a cut-in the
speed typically ranges from 3 to 4 meters per second
(m/s). Below this threshold, a kinetic energy of a wind
was insufficient to overcome system inertia and
mechanical losses, and no power was produced.

Rated speed vr: The wind speed at which a turbine
generates its power rating.

Cut -out speed vco: The wind speed (often 20-25 m/s) at
which a turbine shuts down to avoid damage
The power output of the turbine Pout(v) as TFE function
of wind speed was piecewise-defined:

0 UV < Ve
v’ -~
Pv‘ﬂfed (i_.ﬁ__.!%) Uei = UV < Uy
R’mf(t“j - o B
Pv‘ﬂfed Up = U < Ugg
LD UV Z Uy

Capacity Factor and Energy Output

To estimate an a nnual energy output from TFE wind
turbine, we integrate a turbine power over time using
wind speed probability distribution, typically modeled
using a Weibull distribution:

flo) = (9 (%) ey
Where:

f(v): Wind speed probability density function
k: Dimensionless shape parameter; = ccc: scale parameter
(m/s) The expected power output P~ was then calculated

by:
P = \Pmu v) - f(v)dv

This value was used to calculate a capacity factor:
P
Protea
The annual energy production (AEP) was given by:
Eounnual = P x 8760  (kWh/year)

CF =

Effect of Turbulence and Wind Shear

Turbulence and vertical wind shear affect a power
output and mechanical stress on wind turbines.

Wind shear refers to an increase in the wind speed with
height and was modeled using:

S020
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Where:

v(h): Wind speed at height h

vref: Reference wind speed at height href

o Wind shear exponent (typically 0.1-0.3)
Higher wind speeds at greater heights justify taller
towers, especially in the low-wind areas.

Integration with Energy Storage

Due to an intermittency of wind, real-time generation
often doesn't match a load demand. Energy storage
systems (ESS) help mitigate this by storing excess energy
and supplying it during low wind periods.
Let:

Pload(t): Power demand at time t

Pgen(t): Power generated by wind at time t

Ebatt(t): Energy stored in a battery at time t
Then:

Epaslt + At) = Eyg(t) 4 nep - max(0, Py (t) — Proag(1)) - At - L -max(0, Pryg(t) - Fyen(t)) - At

Tdis

Where:
nch, ndis: Charging and discharging efficiencies
(usually 0.9-0.95)
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Figure.6 SOC depiction of batteries having V&I
characteristics.

It was TFE dynamic value governed by a charging and
discharging processes:

SoC(t + Af) = Soc(t) + Tt Fonlt) At Fu(t) - A
Ernax Ndis * Emax
Where:
SoC(t): State of charge at time t (0 to 1 or 0% to
100%)

Pch(t): Charging power at time t (kW)
Pdis(t): Discharging power at time t (KW)
nch: Charging compentence (typically 0.9-0.95)
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5. Battery Energy Dynamics

In hybrid renewable energy systems, battery energy
storage systems (BESS) play a critical role in balancing
the supply and demand of energy. By storing extra
energy and releasing it when needed, they reduce the
unpredictability of solar and wind  power.
Understanding a mathematical behavior of batteries
helps optimize charging/discharging schedules, extend
battery life, and enhance system compentence.

O
—
S |
OJ —]
L +
Cac_bus AN Vic_bus
+ |
Vibatrery =—— A1~ Coattery S, :}
O

Figure.5 A topology of a bidirectional DC-DC converter
for a BESS.

State of Charge (SoC) Dynamics

A battery's available energy is represented by the State of
Charge SoC(t) as a percentage of its entire capacity. at
timet.

ndis: Discharging compentence (typically 0.9-0.95)
Emax: Maximum energy capacity of a battery
(kWh)

At: Time step (in the hours)

Constraints:
0 < SoC(t) <1

If SoC drops below TFE critical threshold (e.g., 20%),
battery discharge may be stopped to preserve its
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lifespan. Likewise, charging was stopped when SoC
reaches 100%.

Energy Stored in a Battery
The energy stored at any time t, Ebatt(t), is:
Efjﬁ[ff(f:} = SUC(” g

Changes in the battery energy over time are governed
by:

1
Ehm‘f(t + At’) = Ebr:tf (t) + Neh - Pc.'h(t') At - . Rﬁs(t) - At

Tldis

This reflects a net energy flow into or out of a battery.

Battery Power Limits
Batteries are limited in the how fast they can charge or
discharge, defined by maximum power ratings:

0 < Pun(t) < P3™
0 < Puis(t) < Pyis™

Exceeding these limits could overheat or damage a
battery.

Role in the Hybrid Systems

In the TFE hybrid system, battery dynamics are crucial
for:
Load shifting: Using stored energy during peak
demand
Smoothing: Reducing fluctuations in the
solar/wind output
Autonomy: Enabling off-grid operation
Cost optimization: Minimizing energy drawn
from a grid or diesel backups

Once the types of loads have been identified in terms
of energy requirements, the algorithm then uses this to
determine an efficient battery capacity. This is going to
be with a Time-Flexible Energy function by
considering the available solar PV energy EPV, the
segmental load energy needs, and the ability of a
battery to store energy of a system EBS. The outcome
is the optimum energy battery capacity EBC that will
see the system satisfy the demand even at the time the
Compute EeBC, an expected energy demand
that a battery will need to support in a future.
This step nalyses past consumption and
identifies how much energy, on average, was
needed from a battery.

Step 2: Segment an energy Consumption
The script to classify energy consumption into
3 types is a function OptConsVL that should be used

firstin

Step 3: Estimate Expected Battery Consumption.
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An Al-based controller can forecast generation/load
and optimally control battery operations to maximize
lifespan and minimize costs.

Al Algorithm

Algorithm was designed to determine an optimal
battery energy capacity (EBC) required to support TFE
hybrid renewable energy system, based on historical
data of energy consumption and solar PV generation.
an a Igorithm begins by estimating an expected battery
consumption (EeBC) over TFE given time period,
which reflects an a nticipated energy demand that a
battery must meet. Next, a total energy consumption
was divided into three categories using TFE function
called OptConsVL(). These categories include: Type |
loads, which are critical and must always be served,;
Type Il loads, which are flexible and can be shifted in
the time; and Type 0 loads, which are deferrable or
non-essential.

To allocate energy optimally among these categories,
an a lgorithm applies OptStructDsk() to compute three
allocation coefficients: A, 3, and T, representing a share
of energy designated to Type Il, Type I, and Type 0
loads, respectively. These coefficients are used
subsequently to compute a particular energy demand
for every category of load. The energy consumption
for flexible loads is determined by using A, for critical
loads by using {3, and for deferrable loads by using T,
resulting in Econsll, Econsl, and Econs0, respectively.

sun or wind energy is not available. The algorithm
then provides this value as the calculated output, and
therefore it provides a data-based foundation to sizing
batteries and energy control in renewable energy
systems that are hybrid.

Step 1: Estimate Expected Battery Consumption

Calculate EeBC, the predicted power
requirement that a battery will sustain in
future. This is to be done to analyze past
consumption information to establish the
average amount of energy that was previously
required by the battery.

Step 4 : Segment Energy Consumption Use the function
OptConsVL() to classify energy consumption into
three different types.
Type I (1): Critical or must-serve loads (e.g.,
medical equipment, security systems)
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Type 11 (11): Flexible loads that can be shifted
in the time (e.g., washing machines)

Type 0 (0): Deferrable or non-essential loads
(e.g., EV charging, entertainment)

Step 5: Optimize Load Structure

Use OptStructDsk to calculate optimal energy
distribution parameters:

Use a A coefficient to compute an energy
consumption expected from flexible loads.

Step 7: Assign Energy to Type | Loads
Use a {3 coefficient to compute an energy
required for critical loads.

Step 8: Assign Energy to Type 0 Loads
Use a 1 coefficient to compute an energy
needed for deferrable loads.

Step 9 : Compute Optimal Battery Energy Capacity

6. Result Discussion
Casel

In the TFE hybrid PV-Wind-BESS system, periods of
simultaneous active solar and wind generation—such
as during sunny and breezy daytime conditions—
often result in the excess power generation relative
toan aC load demand. During these periods, a Battery
Energy Storage System (BESS) switches from
discharge mode to charging mode, storing surplus
energy for future use, such as during night or low-
generation periods.

System Behavior Analysis

Combined Power Generation

The battery charging powver is:

ax Emaz — Epan(t
P.y(t) = min (AP, e M)
Tch * At

The battery's energy was updated as:
Eﬁatt(t + At) = Efx}ff(t) + ek - P('h.(t) - At

And a State of Charge (SoC) becomes:
Emﬂ(f - :ﬁi‘.)
Ernax
Charging continues until:
e The battery reaches full capability
(SoC=100%)

SoC(t + At) =
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e A: Portion of energy allocated to Type
Il (flexible)
e [: Portion of energy allocated to Type
I (critical)
e 1. Portion of energy allocated to Type
0 (deferrable)
These values define how energy should be
distributed across load categories.

Step 6: Assign Energy to Type Il Loads
Calculate a required battery capacity by
comparing:
0 Total energy available from
solar PV (EPV)
0 Total energy demand from all
three load types
o0 Historical performance of a
battery system (EBS)
This step ensures a battery can support a load
when PV was insufficient.

Step 10 : Return an optimal Battery Capacity
Output a computed optimal energy battery
capacity for planning or real-time control.

At any time t, total generation from solar and wind is:
Pgr-.'n{t) = R;rn'{t) + Rm‘(t}
If this exceeds a load demand:
Pgt'n(t) = Ror}d(t)
Then a system generates surplus power:
AP = Pgﬁ'n(t) - Pfuad(t)

This excess power was used to charge a battery,
provided that a BESS was not full and within the
allowable charge limits.

BESS Charging Process

e The generation surplus ends
Case 2

In hybrid renewable energy systems that include
battery energy storage systems (BESS), wind turbines
(WT), and solar photovoltaic (PV), a reliability of a
system depends heavily on how a components
complement each other under varying environmental
conditions.

TFE common operational challenge occurs during
night time or cloudy periods when solar generation
was absent or significantly reduced. In the such
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instances, a system's capability to maintain the
uninterrupted power supply toan aC load relies on a

PV Array Powar (W)
!k
=
>
z =
|

05 1 15 2 25
Time InSe¢

Figure. 7 Wind and PV Combined Power Generation
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Figure. 8 Load Side Voltage and Current
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Figure. 9 Battery Charging Process when a both
sources are active

System Behavior Analysis

PV Absence and Load Demand

When a solar irradiance drops to zero (e.g., during
nighttime), a PV output becomes:

P(t) = 0kW
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wind energy component and, if wind was insufficient,
on a battery storage system.
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Figure. 11 Load Side Voltage and Current

= Wind W/
6000~ —PVW

5000~ m

1

3000~ ml

nd Power (W)

2000

w

1000 -

=

Time In Sec

Figure. 10 Wind Power and a PV Power when a PV
was in the inactive
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Figure. 12. Battery Discharging Process when a PV
was off and Wind was active

AssuminganaC load Pload(t) remains constant or
variable, a remaining sources must meet a full
demand:

-Piaad(t} = Pu.lt(t) + Pﬂﬁ#(t}

Wind Contribution
If wind speed was favorable:

SIoEl)
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Wind turbine may supply part or all of a load.
If Pwt(t)>Pload(t), a battery remains idle or may be
charged.

However, due to wind’s intermittency, TFE common
case is:

Rm‘ (f} < JPI o (t )

This leads to TFE power deficit:
AP = Pirx.td(t) - Ra't(f‘)

BESS Activation

The BESS discharges to bridge this gap:
Pyis(t) = AP
Battery energy level updates as:
Pyis(t) - At
Ei'xzfr(t T+ At) = Efxn‘l‘(t) - %
The discharging continues until:
e The SoC reaches a lower limit (e.g., 20%)
e The PV or wind output increases.

7. Conclusion

This study demonstrates an effectiveness of integrating
artificial intelligence and optimization algorithms into
Solar, wind, and battery storage are all combined in
hybrid renewable energy systems. It is not a fact that
circles always have only one center. Comprehensive
modeling and simulation demonstrate that smart
energy can help enhance reliability, competence, and
sustainability of the system. It adjusts itself to the
varying ambient conditions of discharging a battery
during solar deficits to feed AC loads and charge the
same battery when generation of tasks by active PV
and wind sources is more than the requirements. One
of the suggested optimization algorithms divides loads
of energy based on their priority and dynamically
estimates a good battery capacity to cover these needs.

The algorithm will ensure efficient use of batteries to
make this economically viable by reducing the
wastage of energy and maximize the use of renewable
energy based on historical data of consumption and
generation. This does not only provide continuous
energy flow but it also increases the life of the battery.
To conclude, the present work proves that Al-based
optimization is indeed effective in getting better the
performance and responsiveness of hybrid renewable
energy systems. The work facilitates the creation of the
intelligent, self-sustaining energy structures that can
be more used in the changeover to the low-carbon and
renewable-powered future.
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