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Abstract: — The following paper discusses one of the uses of artificial intelligence for the purpose of optimize the 
functioning of storing energy facilities with renewable energy sources, like solar and wind power. It begins by 
outlining the theoretical background of the renewable energy production process, technologies of energy storage with 
the emphasis on battery-based ones, and AI-based optimization strategies. This is followed by a study of how AI 
methods including machine learning and evolutionary algorithms may be applied to increase the competence, 
reliability, and economical feasibility of hybrid renewable energy systems. MATLAB is applied to simulate the 
practical situations of the solar photovoltaic panels, wind turbines, and battery storage systems. These simulations 
apply AI algorithms to optimise the way energy flows, how it is stored, and load balancing in dynamically changing 
environmental conditions. Case studies and simulated outcomes are provided that assess an efficacy and issues that 
come with the incorporation of AI. These results show that AI-based optimization helps to improve the concert of 
renewable Energy storage systems significantly and helps the transition to more ecologically friendly and low-carbon 
vitality infrastructure based on TFE. 
Keywords: Cyber Threat Intelligence, Deep Neural Network, Real-Time Detection, SIEM, Wazuh , Network Security.                           

1. Introduction  

Organizations now face a greater attack surface due to 
There has been a significant change in focus toward 
sustainable energy sources, especially vitality and wind 
power, as a result of the global growing need for clean 
and sustainable energy This is because these resources 
have also become very important because of the potential 
to minimalize the eco-friendly effect attached to the use 
of fossil fuel. Nevertheless, intermittency of solar and 
wind energy and their variability present significant 
challenges in ensuring that the supply of energy is steady 
and reliable. The outcome of this fluctuation usually 
leads to an  inequality among the energy source and 
demand and, therefore, the appeal to active mitigation 
policy. Systems that store energy using Battery are the 
most commonly deployed of storing energy in the 

modern power grids, which have become an inseparable 
part of the modern power grid. These systems are meant 
to receive excess energy produced during a period when 
there is a high output of renewable energy and use it 
during a period of low generation or peak demand and 
therefore contribute to grid stability and reliability. This 
combination of ESS to sources of renewable energy  
provides the chance to stabilize the crucial load leveling, 
Support for voltage and rate of recurrence regulation 
purposes They make resilience stronger.and flexibility of 
operation of the power system. When these pictures are 
published, they are distorted even more because of the 
use of wide-angle lenses. Although the dominance of ESS 
along with renewable sources is advantageous in terms 
of its strategy, the functioning processes are complicated.  
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The fluctuation in energy production, constantly 
changing demand trends, and the necessity to make 
rapid and real-time decisions  require the 
implementation of sophisticated control methodologies.  
 
Conventional methods of control, in most cases, lack the 
necessary flexibility and predictive force to manage the 
complexity of systems of hybrid renewable energy. In 
this context, AI has become an important facilitator to the 
energy sector.  
 
In most cases, AI methodology encompasses a vast array 
of methods such as ML and evolutionary algorithms, 
which are currently being perceived as advanced to 
create smart control strategies, able to adjust in real time, 
predict future energy demand, and streamline the 
charge-discharge dynamics of storage systems.  
 
The current paper is a detailed analysis of the use of AI 
to maximize the energy storage apparatus's performance 
in conjunction with the production of power and wind 
power. Theoretical discussions of storing energy and 
production of renewable energy technologies precede the 
consideration of AI-based optimization strategies.  
 
To simulate the operation of AI-based control techniques, 
MATLAB models of real-world scenarios, solar 
photovoltaic panels, wind turbines, and battery storage 
devices, are developed. The outcomes of the simulated 
operation have provided a strong indication that artificial 
intelligence (AI) may bring about a number of new, 
beneficial improvements in the systems for hybrid 
renewable energy functionality for a low-carbon and 
more renewable energy future. 
 

2. Hybrid Renewable energy  

 
The most popular Energy storage devices, wind turbines, 
and solar photovoltaic panels are examples of technology. 
Systems of hybrid renewable energy are  suggested 
solutions meant to address the fundamental shortcomings 
of each technology by merging multiple energy sources.  

 

Using the complementary nature of these resources, 
HRES can offer more reliable, stable, and efficient supply 
of energy to attain TFE. This section outlines a 
mathematical modeling scheme of HRES and gives a 
comprehensive discussion of energy balance, power flow 
dynamics and key performance indicators of the system 

 
Figure. 1 Hybrid System Block Diagram  
 
Total Generation of Power in the TFE Hybrid System 
 
The total power generated Pgen(t) at any time t from 
solar and wind sources was a sum of an individual 
outputs: 

 
Where: 

 Ppv(t): Power from solar PV system at time t 
 Pwt(t): Power from wind turbine at time t 

These values are obtained using a previously discussed 
models for PV and wind energy generation. 
 
Power Balance Equation 
To ensure reliable operation, TFE hybrid renewable 
energy system must maintain the TFE continuous 
balance between energy supply, demand, and storage. 
This balance was governed by a power balance formula 
that guarantees that the total power produced, less the 
load demand, was either stored or supplied from storage, 
depending on a system's operational state. A general 
form of a power balance equation was expressed as: 

 
Where: 

 Pdis(t): At time t, the battery's power was 
released. 

 Pload(t): Load demand at time t 
 Pch(t): Power used to charge a battery 
 Ploss(t): System losses due to conversion, 

transmission, etc. 
If Pgen(t)>Pload(t), excess power can charge a battery (if 
not full). If Pgen(t)<Pload(t), a battery discharges to meet 
a demand. 
Battery Energy Dynamics 
At time t, the energy contained in a battery Ebatt(t) was 
updated by: 

 
Subject to: 

 
Where: 

 ηch: Charging compentence 
 ηdis: Discharging compentence 
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 Emin, Emax: Minimum and maximum battery 
energy levels 

 
Reliability and Energy Shortage Index 
 
To evaluate reliability, we define a Power Supply Loss 
Probability (LPSP), 
 
 TFE common metric for hybrid systems: 

 
A lower LPSP indicates higher reliability. 
 
Optimization Objective Function 
 
The hybrid system can be tailored to achieve a variety of 
goals, including reducing expenses, increasing 
dependability, or reducing battery deterioration.. TFE 
general multi-objective optimization problem may be 
expressed as: 

 
Where: 

x: Decision variables (e.g., number of PV panels, 
wind turbines, battery size) 
Ctotal: Total system cost (capital, operation, 
maintenance) 
Eloss: Total energy lost due to curtailment or unmet 
demand 

Constraints: 
Power balance must be maintained 
Component capacities must not be exceeded 
Battery energy limits must be respected 

 
This can be solved using AI techniques such as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), or 
other metaheuristic approaches. 
 
System Performance Metrics 
 
Key metrics used to evaluate hybrid systems include: 
Renewable Fraction (RF): 

 
Battery Utilization compentence (BUE): 

 
Loss of Energy Supply Probability (LESP): 

 
These considerations make it possible to estimate the 
technical feasibility and the energy competency in a 
hybrid system. TFE studies will benefit from more 
flexible and adaptable energy services thanks to Systems 

for hybrid renewable energy that include solar, wind, 
and storage technologies, especially to off-grid or 
variable-grid scenario. The interaction between source of 
generation and storage dynamics requires an accurate 
model of the dynamics to be taken into consideration as 
an effective design and operation with mathematical 
formulation. Another significant economic and technical 
performance could be maximized, which may be 
facilitated by AI-based algorithms, and reliably 
supported by scalable and sustainable energy systems in 
TFE. 
 

3. Solar Energy Generation 
 

Photovoltaic (PV) systems convert solar radiation into 
electrical energy using a photovoltaic effect. A 
performance of these systems was largely controlled by 
environmental elements including temperature and 
irradiance, as well as by an electrical characteristics of a 
PV cells. This section provides TFE mathematical 
formulation for modeling solar energy generation and 
analyzes key factors affecting PV output. 
 

 
 
Figure. 2 Schematic diagram of PV array with a MPPT 
method 
 
Solar Irradiance and Power Output 
 
The power output Ppvof TFE PV panel can be estimated 
using a following equation: 

 
Where: 

 Ppv: Productivity power of a solar panel (W) 
 Gt: Total pv irradiance proceeding a panel 

superficial (W/m²) 
 A: Superficial part of a PV panel (m²) 
 η: compentence of a Solar module (unitless) 
a) Total Irradiance Gt 

 
Total irradiance received by a tilted PV panel was 
calculated by: 

 
Where: 

 Gb: Beam (direct) irradiance component 
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 Gd: Diffuse irradiance component 
 Gr: Reflected (albedo) irradiance component 

 
Each of these components depends on a tilt angle, 
location, and time of year. 
 
Temperature Effect on Competence 
 
PV module competence decreases as temperature 
increases. A corrected compentenceηT considering 
temperature was given by: 

 
Where: 

ηSTC: compentence at Standard Test Conditions 
(typically 25°C and 1000 W/m²) 
β: Temperature coefficient (usually 0.004 to 0.005 per 
°C for silicon-based cells) 
Tc: Cell temperature (°C) 
TSTC: Standard Test Condition heat (25°C) 

 
The cell heatTc can be estimated as: 

 
Where: 

Ta: Ambient temperature (°C) 
NOCT: Nominal Operating Cell Temperature (°C), 
typically around 45°C 

 
I-V and P-V Characteristics of TFE PV Cell 
 

 
 
Figure. 3 Normalized I-V and P-V characteristics of TFE 
solar cell 
 
The behavior of TFE PV cell was often modeled using a 
single-diode model, which includes TFE current source, 
TFE diode, and resistive elements. an current output I 
was given by: 

 
Where: 
Iph stands for photogenerated current (A).  
•I0: “Saturation current of the diode (A)  
• q: Electron charge (1.602×10−191.602 \times 10^{-

19}1.602×10−19” C)  
•“V:Voltage output (V)” 
• “Rs: resistance in series (Ω)”  
• “Rsh: Shunt resistance (Ω)” 
• n:Ideality factor (usually 1-2)  
•  “k: Boltzmann's constant (1.381×10−231.381 \times 
10^{-23}1.381×10−23” J/K)  
•T:Temperature absolute (K)  
 
This formula controls the i-V characteristics of a TFE PV 
module and aids in figuring out the maximum power 
point (MPP),where the voltage and current at the 
maximum power point are denoted by Vmp and Imp, 
respectively 

 
Maximum Power Point Tracking (MPPT) 
 
To take out a maximum power under varying irradiance 
and heat, MPPT algorithms are employed. One generally 
used method was Unsettle and Observe (P&O): 
 
 P&O Algorithm Logic: 

 Perturb voltage and observe power change. 
 If power increase, continue perturbation in a 

similar direction. 
 If power decreases, reverse a perturbation 

direction. 
 
This process was mathematically represented by: 

 
Decision rule: 

If ΔP > 0 and ΔV > 0, increase voltage 
If ΔP < 0and ΔV > 0, decrease voltage 

 
Analysis then System Sizing 
 
Given TFE location with known solar irradiance data, an 
expected daily energy generation Epv over TFE time 
period t is: 

 
This integral can be numerically solved using irradiance 
profiles from real-world weather data. 
 
The total energy requirement Eload can then be 
compared to Epv, and energy storage capacity Estorage 
was sized accordingly: 

 
This ensures that a battery can compensate during low-
generation periods. 
 

4. Wind Power Production: 
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Wind turbines were used to convert the air's kinetic 
energy into mechanical energy, which was subsequently 
transformed hooked on electrical energy. Wind speed, air 
density, rotor swept area, and turbine compentence all 
had an impact on the TFE wind turbine's power output. 
This section outlines a core mathematical formulations 
used in the wind power analysis and explains key 
performance factors. 
 

 
 
Figure. 4 Schematic diagram of Wind energy system. 
Power Extracted from Wind 
 
The kinetic power available in a wind flowing through a 
rotor swept area of TFE turbine was given by: 

 
Where: 

Pwind: Total power available in a wind (W) 
ρ: Air density (kg/m³), typically 1.225 kg/m³ at sea 
level 
A: Turbine blade swept area (m²), A=πr² 
v: Wind speed (m/s) 

However, not all of this power can be extracted by a 
turbine. 
 
Betz Limit and Power Coefficient 
 
According to Betz's Law, a maximum theoretical 
compentence for TFE wind turbine was approximately 
59.3%. This means that a power coefficient Cp has an 
upper limit of: 

 
The actual power output of TFE wind turbine was then 
given by: 

 
Where: 

Cp: Power coefficient (typically ranges from 0.25 to 
0.45 for modern turbines) 

 
Wind Speed and Turbine Output Curve 
 

Wind turbines operate within the TFE defined range of 
wind speeds, characterized by key operational thresholds 
that determine their energy production capabilities: 
 
Cut-in the speed (vci): This was a minimum wind speed 
at which a turbine begins to generate usable electrical 
power. For most commercial wind turbines, a cut-in the 
speed typically ranges from 3 to 4 meters per second 
(m/s). Below this threshold, a kinetic energy of a wind 
was insufficient to overcome system inertia and 
mechanical losses, and no power was produced. 
 
Rated speed vr: The wind speed at which a turbine 
generates its power rating.  
 
Cut -out speed vco: The wind speed (often 20–25 m/s) at 
which a turbine shuts down to avoid damage  
 The power output of the turbine Pout(v) as TFE function 
of wind speed was piecewise-defined: 
 

 
 
Capacity Factor and Energy Output 
 
To estimate an a nnual energy output from TFE wind 
turbine, we integrate a turbine power over time using 
wind speed probability distribution, typically modeled 
using a Weibull distribution: 

 
Where:  
f(v): Wind speed probability density function  
k: Dimensionless shape parameter; • ccc: scale parameter 
(m/s) The expected power output P‾ was then calculated 
by: 

 
This value was used to calculate a capacity factor: 

 
The annual energy production (AEP) was given by: 

 
 
Effect of Turbulence and Wind Shear 
 
Turbulence and vertical wind shear affect a power 
output and mechanical stress on wind turbines. 
Wind shear refers to an increase in the wind speed with 
height and was modeled using: 
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Where: 

v(h): Wind speed at height h 
vref: Reference wind speed at height href 
α: Wind shear exponent (typically 0.1–0.3) 

Higher wind speeds at greater heights justify taller 
towers, especially in the low-wind areas. 
 
Integration with Energy Storage 
 
Due to an intermittency of wind, real-time generation 
often doesn't match a load demand. Energy storage 
systems (ESS) help mitigate this by storing excess energy 
and supplying it during low wind periods. 
Let: 

Pload(t): Power demand at time t 
Pgen(t): Power generated by wind at time t 
Ebatt(t): Energy stored in a battery at time t 

Then: 

 
Where: 

ηch, ηdis: Charging and discharging efficiencies 
(usually 0.9–0.95) 

 

5. Battery Energy Dynamics 
 
In hybrid renewable energy systems, battery energy 
storage systems (BESS) play a critical role in balancing 
the supply and demand of energy. By storing extra 
energy and releasing it when needed, they reduce the 
unpredictability of solar and wind power. 
Understanding a mathematical behavior of batteries 
helps optimize charging/discharging schedules, extend 
battery life, and enhance system compentence. 
 

 
 
Figure.5 A topology of a bidirectional DC–DC converter 
for a BESS. 
 
State of Charge (SoC) Dynamics 
 
A battery's available energy is represented by the State of 
Charge SoC(t) as a percentage of its entire capacity. at 
time t. 
 

 

 
 

Figure.6 SOC depiction of batteries having V&I 
characteristics.  

 
It was TFE dynamic value governed by a charging and 
discharging processes: 

 
Where: 

SoC(t): State of charge at time t (0 to 1 or 0% to 
100%) 
Pch(t): Charging power at time t (kW) 
Pdis(t): Discharging power at time t (kW) 
ηch: Charging compentence (typically 0.9–0.95) 

ηdis: Discharging compentence (typically 0.9–0.95) 
Emax: Maximum energy capacity of a battery 
(kWh) 
Δt: Time step (in the hours) 

 
Constraints: 

 
If SoC drops below TFE critical threshold (e.g., 20%), 
battery discharge may be stopped to preserve its 
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lifespan. Likewise, charging was stopped when SoC 
reaches 100%. 
 
Energy Stored in a Battery 
The energy stored at any time t, Ebatt(t), is: 

 
Changes in the battery energy over time are governed 
by: 

 
This reflects a net energy flow into or out of a battery. 
 
Battery Power Limits 
Batteries are limited in the how fast they can charge or 
discharge, defined by maximum power ratings: 

 
Exceeding these limits could overheat or damage a 
battery. 
 
Role in the Hybrid Systems 
 
In the TFE hybrid system, battery dynamics are crucial 
for: 

Load shifting: Using stored energy during peak 
demand 
Smoothing: Reducing fluctuations in the 
solar/wind output 
Autonomy: Enabling off-grid operation 
Cost optimization: Minimizing energy drawn 
from a grid or diesel backups 

 

An AI-based controller can forecast generation/load 
and optimally control battery operations to maximize 
lifespan and minimize costs. 
 
AI Algorithm  
 
Algorithm was designed to determine an optimal 
battery energy capacity (EBC) required to support TFE 
hybrid renewable energy system, based on historical 
data of energy consumption and solar PV generation. 
an a lgorithm begins by estimating an expected battery 
consumption (EeBC) over TFE given time period, 
which reflects an a nticipated energy demand that a 
battery must meet. Next, a total energy consumption 
was divided into three categories using TFE function 
called OptConsVL(). These categories include: Type I 
loads, which are critical and must always be served; 
Type II loads, which are flexible and can be shifted in 
the time; and Type 0 loads, which are deferrable or 
non-essential. 
 
To allocate energy optimally among these categories, 
an a lgorithm applies OptStructDsk() to compute three 
allocation coefficients: λ, β, and τ, representing a share 
of energy designated to Type II, Type I, and Type 0 
loads, respectively. These coefficients are used 
subsequently to compute a particular energy demand 
for every category of load. The energy consumption 
for flexible loads is determined by using λ, for critical 
loads by using β, and for deferrable loads by using τ, 
resulting in EconsII, EconsI, and Econs0, respectively. 
 

Once the types of loads have been identified in terms 
of energy requirements, the algorithm then uses this to 
determine an efficient battery capacity. This is going to 
be with a Time-Flexible Energy function by 
considering the available solar PV energy EPV, the 
segmental load energy needs, and the ability of a 
battery to store energy of a system EBS. The outcome 
is the optimum energy battery capacity EBC that will 
see the system satisfy the demand even at the time the 

sun or wind energy is not available. The algorithm 
then provides this value as the calculated output, and 
therefore it provides a data-based foundation to sizing 
batteries and energy control in renewable energy 
systems that are hybrid. 
 
Step 1: Estimate Expected Battery Consumption 
 

Compute EeBC, an expected energy demand 
that a battery will need to support in a future. 
This step �nalyses past consumption and 
identifies how much energy, on average, was 
needed from a battery. 

 
Step 2: Segment an energy Consumption 
 

The script to classify energy consumption into 
3 types is a function OptConsVL that should be used 
first in  
 
Step 3: Estimate Expected Battery Consumption. 

 
Calculate EeBC, the predicted power 
requirement that a battery will sustain in 
future. This is to be done to analyze past 
consumption information to establish the 
average amount of energy that was previously 
required by the battery. 

 
Step 4 : Segment Energy Consumption Use the function 
OptConsVL() to classify energy consumption into 
three different types. 

Type I (I): Critical or must-serve loads (e.g., 
medical equipment, security systems) 
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Type II (II): Flexible loads that can be shifted 
in the time (e.g., washing machines) 
Type 0 (0): Deferrable or non-essential loads 
(e.g., EV charging, entertainment) 

 
Step 5: Optimize Load Structure 
 

Use OptStructDsk to calculate optimal energy 
distribution parameters: 

 λ: Portion of energy allocated to Type 
II (flexible) 

 β: Portion of energy allocated to Type 
I (critical) 

 τ: Portion of energy allocated to Type 
0 (deferrable) 

These values define how energy should be 
distributed across load categories. 

 
Step 6: Assign Energy to Type II Loads 

 
Use a λ coefficient to compute an energy 

consumption expected from flexible loads. 
 

Step 7: Assign Energy to Type I Loads 
Use a β coefficient to compute an energy 
required for critical loads. 

 
Step 8: Assign Energy to Type 0 Loads 

Use a τ coefficient to compute an energy 
needed for deferrable loads. 

 
Step 9 : Compute Optimal Battery Energy Capacity 
 

Calculate a required battery capacity by 
comparing: 

o Total energy available from 
solar PV (EPV) 

o Total energy demand from all 
three load types 

o Historical performance of a 
battery system (EBS) 

This step ensures a battery can support a load 
when PV was insufficient. 

 
Step 10 : Return an optimal Battery Capacity 

Output a computed optimal energy battery 
capacity for planning or real-time control. 

 
6. Result Discussion  

Case1 
 
In the TFE hybrid PV-Wind-BESS system, periods of 
simultaneous active solar and wind generation—such 
as during sunny and breezy daytime conditions—
often result in the excess power generation relative 
toan aC load demand. During these periods, a Battery 
Energy Storage System (BESS) switches from 
discharge mode to charging mode, storing surplus 
energy for future use, such as during night or low-
generation periods. 
 
System Behavior Analysis 

 
Combined Power Generation 

At any time t, total generation from solar and wind is: 

 
If this exceeds a load demand: 

 
Then a system generates surplus power: 

 
This excess power was used to charge a battery, 
provided that a BESS was not full and within the 
allowable charge limits. 
 
BESS Charging Process 

 
The battery charging power is: 

 
The battery's energy was updated as: 

 
 
And a State of Charge (SoC) becomes: 

 
Charging continues until: 

 The battery reaches full capability 
(SoC=100%) 

 The generation surplus ends 
 
Case 2 
 
In hybrid renewable energy systems that include 
battery energy storage systems (BESS), wind turbines 
(WT), and solar photovoltaic (PV), a reliability of a 
system depends heavily on how a components 
complement each other under varying environmental 
conditions.  
 
TFE common operational challenge occurs during 
night time or cloudy periods when solar generation 
was absent or significantly reduced. In the such 
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instances, a system's capability to maintain the 
uninterrupted power supply toan aC load relies on a 

wind energy component and, if wind was insufficient, 
on a battery storage system. 
 

 

 
 
Figure. 7 Wind and PV Combined Power Generation 

 

 
Figure. 8 Load Side  Voltage and Current 
 

 
 

Figure. 9 Battery Charging Process when a both 
sources are active 
 

 
Figure. 11 Load Side  Voltage and Current 
 

 
 

Figure. 10 Wind Power and a PV Power when a PV 
was in the inactive 

 

 
 

Figure. 12.  Battery Discharging Process when a PV 
was off and Wind was active 
 

System Behavior Analysis 
 
PV Absence and Load Demand 
When a solar irradiance drops to zero (e.g., during 
nighttime), a PV output becomes: 

 

AssuminganaC load Pload(t) remains constant or 
variable, a remaining sources must meet a full 
demand: 

 
Wind Contribution 
If wind speed was favorable: 
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Wind turbine may supply part or all of a load. 
If Pwt(t)≥Pload(t), a battery remains idle or may be 
charged. 
 
However, due to wind’s intermittency, TFE common 
case is: 

 
This leads to TFE power deficit: 

 
BESS Activation 
The BESS discharges to bridge this gap: 

 
Battery energy level updates as: 

 
The discharging continues until: 

 The SoC reaches a lower limit (e.g., 20%) 
 The PV or wind output increases. 

 
7. Conclusion 

 
This study demonstrates an effectiveness of integrating 
artificial intelligence and optimization algorithms into 
Solar, wind, and battery storage are all combined in 
hybrid renewable energy systems. It is not a fact that 
circles always have only one center. Comprehensive 
modeling and simulation demonstrate that smart 
energy can help enhance reliability, competence, and 
sustainability of the system. It adjusts itself to the 
varying ambient conditions of discharging a battery 
during solar deficits to feed AC loads and charge the 
same battery when generation of tasks by active PV 
and wind sources is more than the requirements. One 
of the suggested optimization algorithms divides loads 
of energy based on their priority and dynamically 
estimates a good battery capacity to cover these needs.  
 
The algorithm will ensure efficient use of batteries to 
make this economically viable by reducing the 
wastage of energy and maximize the use of renewable 
energy based on historical data of consumption and 
generation. This does not only provide continuous 
energy flow but it also increases the life of the battery. 
To conclude, the present work proves that AI-based 
optimization is indeed effective in getting better the 
performance and responsiveness of hybrid renewable 
energy systems. The work facilitates the creation of the 
intelligent, self-sustaining energy structures that can 
be more used in the changeover to the low-carbon and 
renewable-powered future. 
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